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DUAL-EDGE FUNCTION CLOCK
GENERATOR AND METHOD OF DERIVING
CLOCKING SIGNALS FOR EXECUTING
REDUCED INSTRUCTION SEQUENCES IN A
RE-PROGRAMMABLE I/O INTERFACE

CROSS-REFERENCE TO RELATED
INVENTION

This invention is related to an invention for a “Sequencer
and Method of Selectively Inhibiting Clock Signals to
Execute Reduced Instruction Sequences in a
Re-Programmable I/O Interface,” described in U.S. appli-
cation Ser. No. (SE-1589/213.302), filed concurrently here-
with by the present inventor and assigned to the assignee
hereof. The disclosure of this concurrently filed application
is incorporated herein by this reference.

FIELD OF THE INVENTION

This invention relates to input/output (I/O) interfaces used
for connecting relatively complex and high capacity com-
puter systems to peripheral equipment. More particularly,
the present invention relates to a new and improved I/O
interface by which to send and receive communication
signals, preferably in a serial or narrow parallel form, which
offers the advantage of relatively small size, relatively high
performance, relatively low power consumption, and com-
paratively great versatility and flexibility in accommodating
and executing a variety of different complex communication
protocols.

BACKGROUND OF THE INVENTION

Many modern electronic devices are built as an entire
system on a single semiconductor chip, and as such, are
known as system on a chip (SoC) integrated circuits or
application specific standard products (ASSPs). Building an
entire system or large portion of the system on a single chip
has a number of advantages. Although the costs of initially
designing and fabricating the component may be relatively
high, it is very inexpensive to replicate large numbers of the
systems, thereby reducing the cost of the system on a per
unit basis. By designing the entire system or large portion of
the system on a single chip, a high level of functionality and
better functional interaction between the components of the
system usually results in a more reliable and better func-
tioning product. Usually the entire system or large portion of
the system may be fabricated and packaged in an electronic
component which is physically very small, making such
SoCs and ASSPs ideal for use in small and portable devices
which require a relatively high level of functionality, such as
portable telephones.

Disadvantages of such entire system SoCs and ASSPs is
that they are usually specifically designed to have a single,
fixed function. With the continuing evolution of improve-
ments in electronic devices, a fixed function system on a
chip is likely to have a relatively short usable lifetime before
its functionality becomes outmoded due to the progress of
improvements and changes in technology. Very few, if any,
improvements may be accommodated in a fixed function
chip because it has been specifically designed to implement
only a single set of functionality. Its fixed functionality
usually does not anticipate future improvements because
such future improvements are generally not predictable. In
order to implement improvements in such systems, it is
necessary to redesign the entire semiconductor chip, which
again introduces the relatively high costs of designing and
preparing for fabrication of the system on a semiconductor
chip.
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Attempts at making systems on a chip more flexible in
terms of accommodating more than a single fixed function-
ality have been made, but such attempts involve many
complexities. Attempting to determine exactly the mix of the
different components needed on such a chip, such as a
processor core, memory, logic gates and peripheral interface
devices is very difficult to predict because different devices
require different quantities of these components and func-
tionality from these components. Efforts to provide great
flexibility in terms of quantity and capabilities generally
translates into building more of these components to have
reserve quantity and excess functionality available. Increas-
ing the number of components on the chip may not be
possible, because of the limited size of the chip upon which
to form these components. Increasing the number of com-
ponents on a chip also increases the cost of fabricating the
chip.

These considerations are particularly relevant to input/
output (I/O) interfaces which are included on such SoCs and
ASSPs with increasing regularity. Traditional hard-wired,
I/O interfaces are subject to the restrictions of fixed func-
tionality and limited flexibility to accommodate future
improvements.

An increasingly popular alternative which provides maxi-
mum flexibility is an I/O interface which communicates the
signals directly to a register, and an embedded controller
connected to that register which executes firmware in accor-
dance with the communication protocol. New or different
functionality may be achieved by loading new firmware onto
the embedded controller. The disadvantage of this approach
is that the clocking rates must generally be many times the
rate of the input/output signals, for example a factor of 8 to
32 times greater. With the increases in modern signal com-
munication rates, the internal clock rates necessary to imple-
ment this functionality become impractical to achieve, in
many circumstances. Moreover in those devices which are
portable and operate from self-contained limited power
sources such as batteries, the fact that in most modern logic
families power consumption increases directly in proportion
to the clock rate, the need to use higher clock rates reduces
the time for using such devices between recharging. Many
devices such as portable telephones and wireless data net-
work adapters depend on having a relatively long usable
lifetime between recharging cycles.

Another approach to flexibility is to use programmable
logic in the form of field programmable gate arrays
(FPGAs). The logic of such FPGAs is programmed as a
result of loading a particular control pattern into the chip
after it is fabricated. Changing the control pattern permits
changing the functionality of the device. The disadvantage
of this FPGA approach is that it tends to be significantly less
cost-effective, especially for ASSPs and other high-volume
production items. Moreover, to insure enough functionality
from an FPGA, the number of logic components are typi-
cally greater than is actually necessary, typically by a factor
of 10 sometimes by as much as a factor of up to 100.
Therefore an FPGA will usually consume more space on the
SoC than is necessary. Furthermore, it is often difficult to
mix FPGAs and blocks of hard wired logic or processor
cores on the same chip. FPGAs may offer some benefits, the
approach is generally not an ideal solution for all I/O
interfaces, nor for power-limited applications.

In all of these cases, the primary nature of a typical I/O
interface is a multiplexed serial interface that is either a
single data signal or a small number of parallel data signals,
which carry larger amounts of data in time sequence. The
small number of data signals are often used along with a data
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transfer clock signal and 1 to 3 other discrete logic signals
to perform ancillary functions such as device selection or
data direction control. Coding information accompanies
these signals and provides control to indicate how the
recipient should interpret the received signals. The protocol
or rules which govern this sequential transfer may be defined
by the behavior of an extended finite state machine. The
behavior of a finite state machine can be transformed into a
set of logic equations which implement an instance of the
communication protocol. The functionality of the state
machine depends upon executing commands which set up
the various functional states involved in I/O communication.
Because of the ability to emulate finite state machines with
an embedded processor, it is common to implement 1/O
protocol control using using firmware on the embedded
Processor.

Interfaces of this nature are widely used in a variety of
applications. For example, the interface may be part of a
system chip used in a wireless telephone communication
transceiver, in which the system chip acts as both a receiver
for incoming signals and a source of outgoing signals to be
broadcast. Other examples of similar applications of inter-
faces are at the opposite ends of a communication link in
disk drives, tape drives, wide area networks and local area
networks.

In addition, there are a large number of short haul serial
buses which are used for communicating signals between
separate integrated circuit chips in an electronic device. One
type is used in conjunction with external exposed bus, an
example of which is the well-known universal serial bus
(USB) which is used primarily for connecting a keyboard,
mouse and other peripherals to a personal computers. There
are many other type of short haul serial bus is used primarily
for interconnecting chips within an electronic device. If the
signaling between chips can proceed at an acceptable speed,
it is an advantage to serialize the signals and send them over
a small number of conductors. Reducing the number of
conductors to connect signals between the chips saves
money and reduces the size of the components, because less
package pins are used and fewer solder joints and inter-chip
conductors have to be fabricated.

Communication transceiver and protocol controller chips
are an examples of electronic devices which commonly use
one or more of these short haul serial bus for communicating
between the internal, embedded controller and both on-chip
and external devices. These types of transceiver and con-
troller chips include interfaces which typically implement a
single one out of several common short haul serial bus
protocols such as Motorola’s Serial Peripheral Interface
(SPI), National Semiconductor’s MicroWire, Philips Semi-
conductor’s Inter-IC (I*C) bus, and other similar vendor
proprietary protocols. However, one disadvantage has been
that the interface on such chips has been hard wired, thereby
preventing it from being reprogrammed to use a different
type of short haul serial bus protocol. The user of such a
controller chip is simply limited to using the type of bus
protocol which had been hard wired into the controller chip
or else additional logic chips were required to translate
between bus protocols, with a result of increased cost, size,
and power consumption. Therefore, the external devices
which communicated with the controller had the use the
same type of serial bus protocol as had been hard wired into
the controller chip. In many cases, this was a particular
disadvantage because the other components of the electronic
device may have been designed to implement a different
type of protocol, or it may have been an advantage to use a
different type of serial peripheral protocol with the external
devices.
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4

These and other considerations have given rise to the
present invention.

SUMMARY OF THE INVENTION

The present invention has resulted, in significant part,
from the discovery and recognition that a very substantial
amount of I/O signal processing can be performed with a
serial interface using a small set of relatively powerful,
special purposse instructions and a reduced frequency of the
clock used to execute those instructions. No more than two
instructions need be executed for each time period during
which bit signals are communicated to or from the interface.
Many instructions provide the ability to perform multiple
functions simultaneously, and the opportunity to execute
two of these instructions during each time period of bit
signal transmission and reception permits the opportunity to
set up the necessary functionality in the interface for the
transmission and/or reception of the bit signals and ancillary
clock and control signals as may be necessary.

Of course, executing the instructions at reduced clock
frequency reduces the amount of power consumed, because
the power consumption is directly related to the clock
frequency. Reducing the size and number of the instructions
has the effect of reducing the size of the modules required to
implement the interface, thereby facilitating its integration
into a system on a chip or other ASSPs. The implementation
of the interface is also directly enhanced by using digital
logic circuit elements which minimize or avoid extra time
clocks and time delays, while still minimizing the size of the
interface.

The present invention also recognizes and resolves the
issue of making short haul serial peripheral interfaces repro-
grammable. Being re-programmable, each interface may be
changed in functionality to implement different serial bus
protocols by simply loading new instructions required for
the protocols. Reprogrammability permits a range of gen-
eralities to be implemented in a system chip with an embed-
ded processor, because the interface can be reprogrammed to
implement any of the inter-chip serial bus protocols without
restricting the bus protocol to a single hard wired imple-
mentation. Thus the previous restriction of using controllers
and other system chips with only a single serial peripheral
bus protocol is eliminated, which offers the advantage of
allowing the user to select the most effective bus commu-
nication protocol for the elements within and exterior of the
system chip. Avoiding this restriction permits the same
system chip to execute different re-programmable firmware
to support a variety of different serial bus protocols, allow-
ing the functionality of the system chip to be updated with
advancements in communication protocols.

These and other improvements are achieved in a function
clock generator for generating a function clock signal used
to clock the execution of instructions by an instruction
decoder in a serial peripheral interface based on a source
clock signal having one cycle per bit signal transmitted or
received by the interface. The function clock generator
comprises a logic gate circuit connected to receive the
source clock signal and a delayed copy of the source clock
signal. The logic gate circuit logically gates the source clock
signal with a delayed copy of the source clock signal to
create the function clock signal. A delay circuit receives the
function clock signal and is responsive to edges of the
function clock signal gated by the logic gate circuit to create
the delayed copy of the source clock signal.

Other preferable aspects of the improvements involve the
logic gate circuit gating one cycle of the function clock
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signal for each rising and falling edge of the source clock
signal, making the frequency of the function clock signal
twice the frequency of the source clock signal, time delaying
the copy of the source clock signal through the through the
delay circuit, implementing the logic gate circuit as XOR
logic functionality by a plurality of NAND gates, and
inverting the delayed copy of the source clock signal prior
to applying the delayed copy of the source clock signal to the
logic gate circuit. Preferably the time delay circuit includes
a flip-flop, a delay element and an inverter connected in
series and a feedback path from the inverter to the flip-flop
to supply the signal from the inverter to the flip-flop in a
feedback configuration, and the time delayed copy of the
source clock signal is derived from an output signal from the
inverter in the feedback path and the flip-flop is clocked to
change states upon each rising edge of the function clock
signal.

Other preferable aspects involve the function clock gen-
erator being responsive to an alternate inhibit signal in
which they selective inverting logic gate is connected to
receive the delayed copy of the source clock signal from the
inverter of the delay circuit and to receive the alternate
inhibit signal. The selective inverting logic gate supplies an
inverted copy of the source clock signal from the delay
circuit upon the assertion of the alternate inhibit signal, and
the logic gate circuit responds to the source clock signal and
the inverted copy of the source clock signal to transition
edges of the function clock signal coincidentally with edges
of the source clock signal. The transition of edges of the
function clock signal occurs coincidentally with edges of the
source clock signal so long as the alternate inhibit signal is
asserted. The function clock generator may also be respon-
sive to a rising edge primary signal to cause rising edges of
both the function clock signal and the source clock signal
upon the assertion of the alternate inhibit signal and the
rising edge primary signal.

Other improved aspects of the present invention relate to
amethod for generating a function clock signal used to clock
the execution of instructions in a serial peripheral interface
based on a source clock signal having one cycle per bit
signal transmitted or received by the interface. The method
involves logically gating the source clock signal and a
delayed copy of the source clock signal to create the function
clock signal, and creating the delayed copy of the source
clock signal used in response to edges of the function clock
signal created by the logical gating. Many of the preferred
functional aspects of this method have been described above
in connection with the function clock generator.

A more complete appreciation of the present invention
and its scope may be obtained from the accompanying
drawings, which are briefly summarized below, from the
following detailed description of a presently preferred
embodiment of the invention, and from the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a reprogrammable interface
which embodies the present invention shown as a part of a
system on a chip which includes an embedded processor.

FIG. 2 is a collection of waveform diagrams of signals
which are coordinated in time relationship to one another
and which illustrate basic functional aspects of the repro-
grammable interface shown in FIG. 1.

FIG. 3 is a more detailed block diagram of the repro-
grammable interface shown in FIG. 1.

FIG. 4 is a more detailed block diagram of the clock and
prescaler block of the reprogrammable interface shown in
FIG. 3.
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FIG. 5 is a functional logic diagram of the dual edge
function clock generator shown in FIG. 4.

FIGS. 6, 7, 8 and 9 are cach collections waveform
diagrams of signals present in the function clock generator
shown in FIG. 5 which are coordinated in time relationship
to one another and which which illustrate the functionality
of that function clock generator under different conditions.

FIG. 10 is a functional logic and block diagram of the data
path section of the reprogrammable interface shown in FIG.
3.

FIG. 11 is a graphical illustration of the bit fields of a
delay instruction recorded in an instruction store of the
reprogrammable interface shown in FIG. 3.

FIG. 12 is a collection of waveform diagrams which are
coordinated in time relationship to one another and to the
selected source clock signal and a function clock which
illustrate the functionality of the reprogrammable interface
in response to executing the delay instruction shown in FIG.
11.

FIG. 13 is a graphical illustration of the bit fields of a wait
instruction recorded in an instruction store of the reprogram-
mable interface shown in FIG. 3.

FIG. 14 is a graphical illustration of the bit fields of an
OUTnxb and an INbnx instruction recorded in an instruction
store of the reprogrammable interface shown in FIG. 3.

FIGS. 15, 16, 17, 18, 19 and 20 are each a collection of
waveform diagrams which are coordinated in time relation-
ship to one another and to a bit cell counting signal and a
function clock signal which illustrate the functionality of the
reprogrammable interface in response to executing the OUT-
nxb and INbnx instructions shown in FIG. 14.

FIG. 21 is a graphical illustration of the bit fields of an
output control instruction recorded in an instruction store of
the reprogrammable interface shown in FIG. 3.

FIG. 22 is a logic diagram of a typical off-chip transceiver
and receiver circuit which is connected to the reprogram-
mable interface shown in FIG. 3, in order to transmit and
receive signals over many types of common, short haul
serial peripheral interface buses.

FIG. 23 is a collection of waveform diagrams which are
coordinated in time relationship to one another, to a series of
bit cells, to the selected source clock, to the function clock
signal, and to control and data signals from the transceiver
circuit shown in FIG. 22, illustrating an exemplary write
operation performed by the reprogrammable interface
shown in FIG. 3 using combinations of the instructions
shown in FIGS. 11, 13, 14 and 21.

FIG. 24 is a collection of waveform diagrams which are
coordinated in time relationship to one another, to a series of
bit cells, the selected source clock signal, to the function
clock signal, and to control and data signals from the
transceiver circuit shown in FIG. 22, illustrating a exem-
plary read operation performed by the reprogrammable
interface shown in FIG. 3 using combinations of the instruc-
tions shown in FIGS. 11, 13, 14 and 21.

DETAILED DESCRIPTION

A reprogrammable interface 100, in which the present
invention is embodied, is preferably a part of a larger system
on a chip or system chip 102, such as an ASSP, as shown in
FIG. 1. In addition to the reprogrammable interface 100, the
system chip 102 includes an embedded controller or pro-
cessor 104 and other components 105, such as memory,
which are specific to the system chip 102. Preferably, the
system chip 102 will also include one or more of the
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reprogrammable interfaces 100. An internal bus 106 con-
nects each reprogrammable interface 100, the embedded
processor 104 and the other on-chip modules 105 together,
by which signals are communicated between these elements.
The reprogrammable functionality of the interface 100 is
achieved as a result of the processor 104 loading different
sets of code or values which define instructions into the
interface 100. The code or instructions are loaded into the
interface 100 over data lines 108 which extend from the
internal bus 106. Control and status signals are also supplied
to the interface 100 from the processor 104 over control and
status lines 110 which also extend from the bus 106. The
instructions loaded over the data lines 108, and the control
and status signals loaded over the lines 110, allow the
interface 100 to be reprogrammed to obtain different types
of functionality. After a given set of instructions are loaded
into the interface 100, they are retained in a local instruction
store, where they may be invoked under command of the
processor 104 until such time as the interface 104 instruc-
tions are reloaded or the chip is reset.

The primary functionality of the reprogrammable inter-
face 100 is to act as an input/output (I/O) interface for
receiving externally-generated signals 112, which are
applied as input signals to the system chip 102, and for
supplying internally-generated signals 114, which are sup-
plied as output signals by the system chip 102. In this regard,
the interface 100, the processor 104 and other components
of the system chip 102 act as either a transmitter or a receiver
or both in a communication system with a complementary
receiver and transmitter at the other end of the communi-
cation link. For serial bus protocols that involve master-
slave operation, the interface 100 may be programmed to
function as either the master or the slave.

In addition to communicating the input signals 112 and
the output signals 114, the interface 100 also supplies
internal condition and event signals 116 to the embedded
processor 104 and other on-chip modules 105 of the system
chip 102. The interface 100 also receives control strobe
signals 118 from the embedded processor 104, and possibly
from other on-chip modules 105 of the system chip. The
condition and event signals 116 and the control strobe
signals 118 are internal signals which are used to commu-
nicate between the chip 102.

In many communication systems, the nature of the signals
communicated are a sequence of single digital logic bits.
The sequence of serial bit signals carry larger amounts of
data in time sequence, as well as convey timing, control and
status information along with the data signals themselves.
The signals are organized and coded for transmission and
reception in accordance with preestablished rules, known as
a protocol, which define the basis for the communication
between the devices at opposite ends of a communication
link.

The interface 100 communicates the input and output
signals 112 and 114 as a sequence of the digital logic bit
signals, with one digital logic bit signal occurring during a
time interval or time period designated as a bit cell 120
shown in FIG. 2. Three sequential bit cells 120 are shown in
FIG. 2. Each bit cell 120 is defined by a uniform amount or
division of time which is established by the communication
frequency at which the bit signals are received and trans-
mitted as the input signals 112 and the output signals 114,
respectively. Narrow parallel interfaces operate in a similar
manner except that they transfer several bits on separate
signal paths during each bit cell.

Each bit signal of the input and output signals 112 and 114
assumes a high digital logic value (or level) or a low digital
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logic value (or level) during each bit cell 120 when one of
the input or output signals 112 or 114 is present. This is
illustrated in FIG. 2 where the bit signal occurring during the
first bit cell 120 is a high digital logic value and the bit signal
occurring during the second bit cell 120 is a low digital logic
value. The digital logic values of the bit signals occurring
during each bit cell 120 may be either a logic high or a logic
low value as represented by both levels of bit signals as
shown in the third bit cell. The relationship between logic
levels (high or low) on the serial data signals 112, 114 and
the data values communicated by those levels (0 or 1) is
arbitrary, and is defined as part of the serial bus protocol.

In order to synchronize the operation of the program-
mable interface 100 to receive input signals 112 or to deliver
output signals 114, a source clock signal 122 is present in the
interface 100. The source clock signal 122 may be selected
from different clock sources, both internal and external to
the interface 100, and is therefore referred to as the selected
source clock signal. The selected source clock signal 122
defines the boundaries of each bit cell 120. The selected
source clock signal 122 undergoes a complete cycle during
the duration of each bit cell 120. Thus, a positive pulse of the
selected source clock signal 122 occurs during approxi-
mately half of the interval of the bit cell 120, and a negative
pulse of the selected source clock signal 122 occurs during
the remaining half of the bit cell 120. Duty cycle variations,
typically extending to at least 33/67 percent, can be tolerated
when performing common serial protocols, and more
extreme clock asymmetry can be accommodated with care-
ful circuit design. Use of the present invention is not
dependent upon having a 50 percent duty cycle square wave
as the selected source clock signal, unless such a require-
ment is part of the communication protocol.

A rising edge of the selected source clock signal 122
(represented by an upward pointing arrow shown in FIG. 2)
defines the beginning and ending boundaries of each bit cell
120. Of course, only one rising edge of the selected source
clock signal 122 occurs for each bit cell 120. In the follow-
ing description, the selected source clock signal 122 is
sometimes abbreviated as “SelClk,” and the function clock
signal is sometimes abbreviated “FCLK”.

One of the important aspects of the present invention is
that the reprogrammable interface 100 generates a function
clock signal 124. The function clock signal 124 is occasion-
ally referred to in the following description as “FCLK.” A
rising edge of the function clock signal 124 is used to clock
all data path elements enabled by the instruction decoder, as
well as to increment to another instruction executed by the
interface 100, among other things, as is discussed below in
greater detail. The falling edge of the function clock signal
124 is normally not used by the I/O circuitry of the interface.

As a shown in FIG. 2, the function clock signal 124
normally undergoes two complete cycles during each bit cell
120 and during each cycle of the selected source clock signal
122. The interface 100 includes a dual edge function clock
generator (240, FIGS. 4 and 5, described in greater detail
below) which generates one cycle of the function clock
signal 124 for each rising and each falling edge of the
selected source clock signal 122. Because there is both a
rising edge and a falling edge during each cycle of the
selected source clock signal 122, two complete cycles of the
function clock signal 124 occur during each bit cell 120 and
each cycle of the selected source clock signal 122. Having
two complete cycles of the function clock signal 124 avail-
able during each bit cell makes it possible for the program-
mable interface to execute two instructions per bit cell 120.
As discussed more completely herein, executing one or two
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instructions per bit cell 120 makes it possible for the
interface 100 to achieve very high efficiency from an
execution-instruction standpoint while consuming very low
power in performing I/O operations, among other advan-
tages and improvements.

The selected source clock signal 122 is designated as
having a primary edge and a secondary edge. In the example
illustrated in FIG. 2, falling edges of the selected source
clock signal 122 are designated as the primary edges (P), and
rising edges of the selected source clock signal 122 are
designated as the secondary edges (S). Designating the
edges as primary or secondary is primarily relevant when it
iS necessary to establish or to maintain synchronization of
instruction execution relative to the boundaries of the bit
cells 120. Either the rising edge or the falling edge may be
designated to be as the primary edge under control of the
processor 104, with the opposite edge designated as the
secondary edge. The secondary edge is therefore the edge of
opposite polarity to the primary edge. Since the falling edge
is shown in FIG. 2 as the primary edge, the secondary edge
is the rising edge.

In addition to primary and secondary edges of the selected
source clock 122, the term “alternate” is used to describe the
next sequential edge of the selected source clock signal 122
relative to the the edge of the source clock signal 122 which
yielded the rising edge of the function clock signal 124
which caused execution of the current instruction. For
example, if the current instruction was executed pursuant to
a rising edge of the selected source clock signal 122, the
alternate edge would be the following falling edge of the
selected source clock signal 122.

The concept of alternate inhibit is described below as
inhibiting the generation of a function clock pulse on the
alternate edge of the selected source clock signal 122. This
has the effect of causing the frequency of the function clock
signal 124 to become the same as the frequency of the
selected source clock signal 122, during the time of the
inhibition. After the inhibition is terminated, the frequency
of the function clock signal 124 resumes to its normal rate
of twice the frequency of the selected source clock signal
122. This effect is also shown in FIG. 2, where an alternate
inhibit signal 126 is asserted at a rising edge 125 of the
function clock signal. The alternate edge inhibit signal 126
is sometimes referred to herein as the “Altlhn” signal. In
response to the assertion of the alternate inhibit signal 126
during the occurrence of a rising edge of the function clock
signal 124, the next cycle of the function clock signal 124
assumes the frequency of the selected clock source 122. This
is shown in FIG. 2 by a falling edge 127 of the function
clock signal 124 occurring during the next rising edge of the
selected source clock signal 122, and by the next rising edge
128 of the function clock signal 124 occurring with the next
rising edge of the selected source clock signal 122. Thus,
between the edges 125 and 128, the frequency of the
function clock signal 124 is the same frequency as the
selected source clock signal 122.

The assertion of the alternate edge inhibit signal 126 is
very useful in the efficient execution of instructions by the
interface 100, as is discussed below. The assertion of the
alternate edge inhibit signal 126 makes the frequency of the
function clock signal 124 equal to the frequency of the
selected source clock signal 122, thereby causing the execu-
tion of only one instruction per bit cell 120. The repeated
execution of only one instruction per bit cell very effectively
performs repetitive I/O functions to enhance the data
throughput characteristics of the interface 100 while con-
suming reduced amounts of power, in contrast to prior state
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machine implementations which otherwise would require
many more instructions to be fetched and executed to
accomplish the same purpose.

More details concerning the reprogrammable interface
100 are shown in FIG. 3. The reprogrammable interface 100
includes a clock and prescaler 130 which generates the
function clock signal 124 shown in FIG. 2. The clock and
prescaler 130 receives various clock input signals 132 from
other sources on the system chip 102, one of which prefer-
ably includes the internal clock signal from the processor
104 (FIG. 1). The clock and prescaler 130 also may receive
an external serial clock in signal 134 (SCKin) which is
supplied by or is derived from an external source which
clocks the serial data bits of the input and output signals 112
and 114 (FIG. 1). For example, an external radio receiver or
radio transmitter may supply the serial clock in signal 134 to
the interface 100. In general, communication receivers pro-
vide clock signals, but communication transmitters will
often require clock input signals from the interface.

The serial clock input signal (SCKin) 134 is applied from
an internal I/O logic interface 136. The internal I/O logic
interface 136 communicates data, control and status signals
with various components of the system chip 102 (FIG. 1) by
I/0O signals 138. The I/O signals 138 include at least the input
signals 112 and the output signals 114 (FIG. 1). Some serial
bus protocols perform full duplex transfers, during which
both input 112 and output 114 operate simultaneously.
Others use half duplex transfers, performing input and
output alternately on a single signal. When half duplex
transfers are performed it is sometimes useful to generate a
serial data direction (SDDIR) control output in place of the
dedicated input 112. Also, many serial bus protocols allow
attachment of more than 2 devices in which case a serial
device enable (SDEO) signal is typically needed to identify
the target devise. The programmable interface 100 can
generate one or more SDE-signal although only SDEO is
illustrated herein.

The clock and prescaler 130 produces and distributes the
function clock signal (FCLK) 124. The function clock signal
124 clocks or increments a conventional program counter
140, and thereby causes the program counter 140 to supply
instruction address signals at 142 to an instruction store 144.
The next address value is clocked into the program counter
140 at the rising edge of the function clock signal 124. In
addition to the function clock signal 124, the clock and
prescaler 130 also produces synchronized control signals
146 to implement run/halt/step logic within the program
counter 140. More details concerning the clock and prescaler
130, the function clock signal 124, and the control signal 146
are described below in conjunction with FIGS. 4 and §.

The program counter 140 is preferably a five to seven bit
synchronous counter with parallel load functionality. The
program counter 140 can count up and may be able to count
down. The program counter 140 can be reset to a start
address, or can be commanded to resume at the start address.
In addition, the program counter 140 can increment by one
for sequential execution, can increment by two for skip
functions, and can be loaded with a new value for branch
functionality, which may be accomplished conditionally or
unconditionally as is well-known.

The instruction store 144 is preferably a conventional
small, single port memory array. The instruction store 144
preferably has 32 to 128 locations which hold 8 to 16 bit
instructions in each location. The instruction store 144 may
be implemented as a small static random access memory
(SRAM) array, or as a register file. The code loaded into
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each memory location constitutes instructions for the repro-
grammable interface 100. Instructions are loaded into the
memory locations of the instruction store 144 from the
internal bus 106 under the control of the embedded proces-
sor 104 (FIG. 1). When loading the instructions in the
instruction store 144, the embedded processor 104 halts the
interface 100 and also sets the program counter 140 to the
first location to be loaded. The embedded processor 104 sets
the program counter 140 by communicating signals over the
internal bus 106 to the program counter. As each instruction
is written in a location of the instruction store 146, the
embedded processor 104 or bus interface logic increments
the program counter 140 to the next location when loading
the next instruction.

The instructions addressed by the address signals 142
from the program counter 140 are supplied as instruction
signals 148 from the instruction store 144 to an instruction
decoder 150. The instruction decoder 150 decodes the
instruction signals 148 into various control signals supplied
to the other elements of the interface 100. The control
signals from the instruction decoder 150 control the opera-
tion of the interface 100. The instruction signals 148 are
obtained by reading and decoding instructions obtained from
the instruction store 144 at the location which is addressed
by the address signal 142. One instruction is executed on
each rising edge of the function clock signal 124, which
corresponds to edges of the selected source clock signal 122
unless the execution is halted by a halt function or comple-
tion is extended by executing a delay or wait instruction.
Reprogrammability of the interface 100 is obtained as a
result of the ability to change the instructions recorded in the
instruction store 144.

The reprogrammable interface 100 also includes a data
queue 152, which is preferably formed by one or more data
registers, and if appropriate, address registers. The address
and data registers form a logical transmit queue, a logical
receive queue, or both, for the transmission and reception of
signals on the internal bus 106. In some implementations,
these registers may be organized into a physical first-in,
first-out (FIFO) queue. The data queue 152 communicates
and synchronizes data flow between the embedded processor
104 (FIG. 1) and the data transmitted to and received by the
interface 100.

The data queue 152, the internal I/O logic interface 136
and certain data path elements 154 form an [/O section of the
reprogrammable interface 100. The data path elements 154
permit manipulation of the data as applied to or received
from the data queue 152, in accordance with instructions
received from the instruction decoder 150.

The instruction decoder 150 generates control signals at
156, 158 and 160 which are applied to the data queue 152,
the data path elements 154 and the I/O logic interface 136,
respectively, to control aspects of their operation. The
instruction decoder 150 also supplies control signals 162 and
164 to the program counter 140 and the clock and prescaler
130, respectively, to control their operation. Other control
signals are supplied to provide status and I/O event signals
116 to the embedded processor 104 (FIG. 1). The control
strobe signals 118, also described in conjunction with FIG.
1, are applied to the instruction decoder 150. More details
concerning the I/O section of the interface 100 (data queue
152, 1/0 logic interface 136 and data path elements 154) are
described below in conjunction with FIG. 10.

The clock and prescaler 130 is shown in greater detail in
FIG. 4. The clock and prescaler 130 typically includes a
prescaler 180. The prescaler 180 may be a conventional
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digital circuit component used to convert a clock signal into
a square wave signal having a fifty percent duty cycle. The
prescaler 180 derives a lower frequency clock signal from a
higher frequency clock signal. The functionality of conven-
tional prescalers is well-known, and a variety of different
conventional prescalers may be used as, or as a part of, the
clock and prescaler 130.

A variety of different frequency clock signals 134, 182,
184 and 188 are applied to the prescaler 180. Preferably, the
clock signal 184 is the master clock signal (MCIKk) of and
from the embedded processor 104 of the system chip 102
(FIG. 1). The clock signal 134 (SCKin) is the external clock
signal from an external device (not shown) which is supplied
to the interface 100 and conducted through the internal I/O
logic 136 (FIG. 3). In certain types of communication
systems, an external source such as a receiver or a trans-
mitter will supply a signal which defines the boundaries of
the bit cell 120. If a signal from an external prescaler is
supplied, that signal is represented at 182. The signal 188 is
exemplary of any other different frequency clock signal
which may be available for use by the prescaler 180 as a
basis by which to derive the selected source clock signal
122.

The prescaler 180 is connected to the internal bus 106 by
the data lines 108. Information may be loaded from the
embedded processor 104 (FIG. 1) into the prescaler 180 to
obtain the frequency selection and square wave character-
istics desired, based on a selected one of the clock signals
134,182,184 and 188. Control signals 194 to 200 are among
the control signals 110 (FIG. 1) which are also applied from
the internal bus 106. The control signals 194-200 consist of
a prescaler enable signal, load enable signal (LdEn), a load
clock signal (LdCKk), a reset signal, and a prescaler source
select signal 200, respectively.

A prescaler output clock signal (PsCIk) 202 is supplied
from a clock output terminal of the prescaler 180. The
master clock signal 184 is applied to the zero input terminal
of the multiplexer 204, the prescaler output clock signal 202
is applied to the first input terminal of the multiplexer 204,
and other clock signals 188 and 134 are supplied to the
second and third input terminals of the multiplexer 204,
respectively. A two bit multiplexer control signal 206, which
is one of the control signals 166 supplied from a modal
control register loaded by an embedded processor 104 (FIG.
1), selects one of the input terminals to form the clock signal
134. In certain cases the instruction decoder may include the
ability to change the signals during instruction execution,
but use of such functionality requires considerable care. The
clock signal which is selected by the multiplexer 204
becomes the selected source clock signal 122 referred to in
FIG. 2. As such, the selected source clock signal defines the
bit cells 120 (FIG. 2) which form the basis for the /O
communication through the interface 100. The clock and
prescaler 130 may also include a well-known clock qualifier
circuit (not shown).

One significant aspect of the present invention is a dual
edge function clock generator 240. The dual edge function
clock generator 240 receives the selected source clock signal
122. Using the selected source clock signal 122 (FIG. 2), the
dual edge function clock generator 240 generates the func-
tion clock signal 124 and modifies its frequency in response
to the assertion of the alternate inhibit signal (Altlnh) 126,
as has been mentioned above and as will be discussed in
greater detail below in conjunction with FIG. 5. Other
signals applied to the function clock generator 240 include
a function halt (Fhalt) signal 242, a rising edge primary
(REPri) selection signal 244, a step signal 246, an alternate
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edge inhibit selection signal 248 and a one edge selection
signal (1 Edge) 250.

The signals 248 and 250 are combined by an OR gate 252
to create an alternate inhibit signal (Altlnh) 126. Either the
one edge selection signal 250 or the alternate edge inhibit
selection signal 248 cause the same functionality to occur
within the function clock generator 240, and for that reason
the alternate inhibit signal 126 is the result of applying either
of the signals 248 or 250 through the OR gate 252. The
assertion of the alternate edge inhibit signal 126 is very
useful in executing instructions in accordance with the
present invention, as discussed below.

The assertion of the function halt signal 242 ceases the
operation of the function clock generator 240, while negat-
ing the function halt signal 242 causes the function clock
generator 240 to operate. The step signal 246 is used in a
conventional manner to generate a single cycles of the
function clock signals for stepping through individual logic
instructions executed by the interface 100, under control of
the embedded processor 104 (FIG. 1) or external debug
logic.

The assertion of the rising edge primary signal 244 causes
the rising edge of the selected source clock signal 122 (FIG.
1) to become primary as a reference for executing the
instructions from the instruction store 144 (FIG. 3). Desig-
nating one of the edges of each selected source clock signal
as the primary edge has the effect of defining the opposite
edge as the secondary edge. Conversely, negating the rising
edge primary signal 244 invokes the opposite definition of
the rising and falling edges. Primary edges are not neces-
sarily aligned with bit cell boundaries. FIG. 2 shows a falling
edge of the selected source clock signal 122 at the beginning
of each bit cell 120 as the primary edge, and a rising edge
in the middle of each bit cell 120 as the secondary edge. The
condition shown in FIG. 2 is achieved by negating the rising
edge primary signal 244.

Alogic diagram of the dual edge function clock generator
240 is shown in FIG. 5. The primary input signals to the
function clock generator 240 are the selected source clock
signal (SelClk) 122 the rising edge primary signal (REPri)
244, and the alternate inhibit signal (Altlnh) 126. The
operation of the function clock generator 240 is stopped by
the assertion of the function halt signal (Fhalt) the 242. An
inverter 280 inverts the logical level of the function halt
signal 242 to create a function run (Frun) signal 256. The
step signal 246 may be asserted when the function halt signal
242 is asserted to generate single cycle of the function clock
signal 124 for the purpose of stepping individually through
each of the instructions in the sequence of instructions
executed by the interface 100.

The primary functions of the function clock generator 240
are to generate the function clock signal 124 at a frequency
which is normally twice the frequency of the selected source
clock signal 122 when the alternate inhibit signal 126 is
negated; to inhibit or suppress an alternate edge of the
selected source clock signal 122 to cause the frequency of
the function clock signal 124 to assume the frequency of the
selected source clock 122, when the alternate inhibit signal
126 is asserted; and to select the rising edge of the selected
source clock signal 122 as the primary edge when the rising
edge primary signal 244 is asserted, and to select the falling
edge of the selected source clock signal 122 as the primary
edge when the rising edge primary signal 244 is negated.

Four NAND gates 282, 284, 286 and 288 are connected
to implement EXCLUSIVE OR (XOR) logic functionality
between the selected clock source signal 122 and an A signal
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290 supplied by an XOR gate 292. As will be apparent from
the following discussion, the A signal 290 is a time delayed
copy of the selected source clock signal 122. Performing an
XOR logic function between the signals 122 and 290 has the
effect of multiplying the frequency of the selected source
clock (although not preserving symmetry while doing so)
thereby causing the function clock signal 124 to have a
frequency twice that of the selected source clock signal 122.
The lack of symmetry of the function clock signal 124 is not
a problem because only rising edges of the function clock
signal 124 can use operations within the programmable
interface 109.

The A signal is created by a triggering, inverting time
delay circuit formed by a flip-flop 296, a delay element 298,
an inverter 300, an XOR gate 302, and the XOR gate 292.
Using the three-input NAND gates 284 and 286 implements
the XOR logic function while permitting the rising edge
primary signal 244 and the halt signal 242 to achieve their
functionality without the signal propagation delay that
would occur if three separate stages of gating were required
to implement these functions. This type of logic minimizes
the time delay between the selected source clock signal 122
and the function clock signal 124. Excessive delay in this
path between signals 122 and 124 could require a compen-
sating delay in the serial data I/O signals, which would have
the effect of slowing the functionality of the interface 100.

The function run signal 256 is applied to the input
terminals of the NAND gates 284 and 286 to permit the
XOR logic functionality to occur while the function clock
generator 240 is not halted by the assertion of the function
halt signal 242. The function run signal 256 is also applied
to one input terminal of an OR gate 294, with the step signal
246 applied to the other input terminal of the OR gate 294.
The output signal from the OR gate 294 is applied to one of
the input terminals of the NAND gate 288 to allow the step
signal 246 to generate a cycle of the function clock signal
124 with each assertion, while the interface 100 is halted.

Another function of the triggering, inverting time and
delay circuit formed by the circuit elements 292 and
296-302 is establishing the time width of the positive pulse
of each cycle of the function clock signal 124. The XOR
logic functionality of the NAND gates 282, 284, 286 and
288 creates a rising edge of the function clock signal 124.
The time delay of signal propagation through the delay
element 298 is primarily responsible for establishing the
time width of the logic high portions of each cycle of the
function clock signal. The falling edge of each pulse of the
function clock signal 124 is established by the circuit
elements 292 and 296302, as a result of the change in logic
state of the A signal 290 at the end of the time period
established by the delay element 298. The minimum time
width of each pulse must yield a logic high portion of each
cycle of the function clock signal 124 which is long enough
to clock the relevant circuitry of the reprogrammable inter-
face 100 (FIG. 3). The maximum time width of the logic
high portion of each cycle of the function clock signal must
be sufficiently shorter than the shortest permissible interval
between successive edges of the selected source clock signal
122 to allow clock recovery time.

The flip-flop 296 is clocked by the rising edge of each
cycle of the function clock signal 124. Clocking the flip-flop
296 causes a C signal 310 at the input terminal of the
flip-flop to be clocked into through the flip-flop 296 to
appear as a D signal 304. The D signal 304 from the flip-flop
296 is applied to an input terminal of the delay element 298.
Typically, the delay element 298 is formed by a sufficient
number of buffers or inverter stages to result in enough
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signal propagation delay between the input and output
terminals of the delay element 298 to satisfy the time width
requirements of the high logic portions of each cycle of the
function clock signal 124. After a delay caused by the delay
element 298, an output signal 306 occurs as a delayed
version of the D signal 304. The output signal 306 is inverted
by the inverter 300 to become a B signal 308. The B signal
308 is applied to one input terminal of each of the XOR gates
292 and 302. The B signal 308 is a delayed and logically
inverted version of the D signal 304.

When the alternate inhibit signal 126 is negated, the XOR
gate 302 exhibits logical OR functionality, which allows the
B signal 308 to pass through. A high logic level B signal 308
produces a high logic level C signal 310. Of course, a low
logic level B signal 308 will produce a low logical level C
signal 310. In essence, the time delaying and inverting
functionality causes the C signal 310 to alternate in logical
levels with each triggering event of the flip-flop 296, when
the alternate inhibit signal 126 is negated. Each triggering of
the flip-flop is caused by the rising edge of a cycle of the
function clock signal 124.

The B signal 308 is propagated through the XOR gate 292
and becomes the A signal 290. The A signal 290 has become
inverted as a result of the inverter 300, compared to the
logical state of the A signal 290 which initially caused the
XOR functionality of the NAND gates 282, 284, 286 and
288 to initiate the rising edge and the positive pulse of the
function clock signal 124. Because the A signal 290 has
changed states after the time delay caused by the delay
element 298, the XOR functionality of the NAND gates
282-288 causes the function clock signal 124 to change
logical levels, thereby causing a falling edge of the function
clock signal 124 and terminating the time width of the logic
high portion of one cycle of the function clock signal.

The logical level of the A signal 290 remains in this state
which caused the XOR functionality of the NAND gates
282-288 to terminate the logic high portion of a cycle of the
function clock signal 124 until the selected source clock
signal 122 changes logical states. When the selected source
clock signal 122 changes logical states, XOR functionality
of the NAND gates 282288 again initiates a rising edge and
the beginning of a positive pulse of the function clock signal
124. The function clock signal causes the same, previously
described effect to occur from the triggering, inverting and
delaying circuit formed by the circuit elements 292 and
296-302. In this manner the frequency of the function clock
signal 124 is normally twice the frequency of the selected
source clock signal 122.

The assertion of the alternate inhibit signal 126 to the
input terminal of the XOR gate 302 has the effect of
inverting the logical level of the B signal 308 to form the C
signal 310. The C signal 310 will not changed states when
the next rising edge of the function clock signal 124 occurs,
because the inverter 300 and the XOR gate 302 will cause
the C signal to maintain its current logic level. By inverting
the logical level of the B signal 308 by the inverting action
of the XOR gate 302 when the alternate inhibit signal 126 is
asserted, the logical level of the C signal does not change
relative to the logical level of the previous C signal 310
which initiated the creation of the subsequent B signal.
Consequently, when the next rising edge of the function
clock signal 124 clocks the flip-flop 196, no change in the
logical level of the B signal 308 occurs. The continued
logical level state of the B signal causes the A signal 290 to
remain in the same state that initiated the XOR functionality
of the NAND gates 282-288, and the function clock signal
124 remains asserted for the full duration of the half cycle
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of the selected source clock signal 122 which initiated the
pulse of the function clock signal 124 in the first instance. As
a result, the logic high portion of one cycle of the function
clock signal 124 has the same time duration as the half cycle
of the selected source clock signal 122 which initiated that
pulse.

The function clock generator 240 stays in this condition
until the occurrence of the next edge of the selected source
clock signal 122. The next edge of the selected source clock
occurs at one-half of the period of the selected source clock
signal 122, which would be one full period of the function
clock signal 124 if it was not inhibited but instead was
allowed to oscillate at its normal frequency. Thus, the logical
low portion of the function clock signal 124 is also stretched
for the amount of time that would be a complete clock cycle
of the uninhibited function clock signal. Under these
circumstances, the frequency of the function clock signal
124 is reduced by two, to a frequency which is the same as
the frequency of the selected source clock signal 122.

The assertion of a logical high-value of the rising edge
primary signal 244 causes the XOR gate 292 to function as
an inverter. A signal 290 becomes an inverted copy of the B
signal 308. By inverting the logical level of the A signal 290
when the rising edge primary signal 244 is asserted, the
effect of change in the logical state of one of the input signals
to the XOR functionality of the NAND gates 282—288 is to
cause those NAND gates to gate from the opposite edge of
the selected source clock signal 122. Because of the circuit
connections of the NAND gates 282—288 as shown in FIG.
5, a rising edge of the function clock signal 124 occurs in
conjunction with a rising edge of the selected source clock
signal 122 when the rising edge primary signal 244 is
asserted. When the rising edge primary signal 244 is
negated, the rising edge of the pulses from the function clock
signal 124 is triggered from the falling edge is of the selected
source clock signal 122.

The principal purpose to for the designation of a primary
clock edge is to facilitate synchronization of the instruction
sequence with the selected source clock signal 122, in
conjunction with the wait instruction discussed below in
connection with FIG. 13. In the dual edge function clock
generator 240 the rising edge primary signal 244 controls the
polarity of the A signal 290 such that the primary clock edge
will produce a low to high transition of the function clock
signal upon the negation of the function halt signal 242.

The function clock generator 240 is halted during the
assertion of the function halt signal 242. When halted, the
flip-flop 296 is reset, meaning that the B signal 308 is at a
logic high state. If the rising edge primary signal 244 is high
the XOR gate 292 will cause the A signal 290 to be low. The
low A ssignal 290 is applied to the NAND gates 282 and 286,
which means that the XOR functionality of the NAND gates
will not invert the selected source clock signal 122. Conse-
quently a rising edge of the selected source clock signal 122
will create a rising edge of the function clock signal 124.

The rising edge primary signal 244 puts the A signal 290
in a low state when the function halt signal 242 is negated
and the function clock generator 240 is allowed to run, the
next edge of the correct rising polarity creates the rising edge
of the function clock signal 124 to start the sequence of
instruction execution after the wait instruction. The neces-
sary synchronization to run a multiplexer in the data path
occurs. This is an advantage because it is extremely difficult
to perform static timing analysis, let alone dynamic closure
on timing loops, when multiplexers are used in the clock
path.
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The above described functionality of the dual edge func-
tion clock generator 240 is shown in greater detail under
conditions of asserting of the rising edge primary signal 244
in FIG. 6, of negating the rising edge primary signal 244 in
FIG. 7, and of asserting the alternate inhibit signal 126 in
FIGS. 8 and 9. In the waveform diagrams shown in FIGS.
6,7,8 and 9, time delays are shown in a greatly exaggerated
manner compared to the time delays which will actually
occur in the circuitry of the function clock generator 240. All
numerical references to components of the function clock
generator 240 made in conjunction with the description of
FIGS. 6, 7, 8 and 9 refer to FIG. 5.

The situation shown in FIG. 6 is based on a rising edge
primary signal 244 (FIG. 5) asserted at a high logical level.
The selected source clock signal 122 establishes a beginning
time reference point 320 for each cycle of the selected
source clock signal 122, and the timing reference point for
the function clock signal 124, the A signal 290, the B signal
308, the C signal 310 and the D signal 304. Another timing
reference point 324 denotes the beginning of the logical low
portion or phase of each cycle of the selected source clock
signal 122. The frequency of the function clock signal 124
is twice the frequency of the selected source clock signal
122. A rising edge 340 of the selected source clock signal
122 and a logic low level of the A signal 290 at time
reference 320 cause the function clock signal 124 to assume
a high logical level at a rising edge 342, as a result of the
XOR functionality of the NAND gates 282—-288. The rising
edge 342 of the function clock signal 124 occurs after a
slight time delay interval from the reference point 320. The
rising edge 342 of the function clock signal 124 clocks the
flip-flop 296 and causes a rising edge 344 of the D signal 304
to be applied to the delay element 298, after a short
propagation delay through the flip-flop 296. The delay
element 298 and the inverter 300 generate a falling edge in
the B signal 308. The falling edge 346 of the B signal 308
is a time delayed and inverted copy of the D signal 304. The
C signal 310 is a time delayed copy of the B signal 308, as
a result of the propagation delay through the XOR gate 302.
A falling edge 348 of the C signal 310 occurs at a time
reference 322 which is delayed relative to the falling edge
346 of the B signal 308.

Because the alternate inhibit signal 126 is negated, the
XOR gate 302 functions as an OR gate. However, because
the rising edge primary signal 244 is asserted, the XOR gate
292 functions as an inverter, causing the A signal 290 to be
in inverted copy of the B signal 308. A rising edge 350 of the
A signal 290 is time delayed with respect to the falling edge
346 of the B signal 308, because of the propagation delay
through the XOR gate 292. The propagation delay through
the XOR gate 292 is approximately the same as the propa-
gation delay through the XOR gate 302, thereby causing the
rising edge 350 of the A signal 290 to occur approximately
at the same time as the falling edge 348 of the C signal 310
occurs at time reference 322.

With the change in logical level of the A signal 290 at time
322, the high logical level of the selected source clock signal
122 and the high logical level of the A signal 290 cause the
XOR logic functionality of the NAND gates 282-288 to
generate a low logical output signal within a short time delay
after the time reference 322, as shown by the falling edge
351. This change in state of the function clock signal 124
from its previously high state to a low state occurs after a
propagation delay through the NAND gates 282-288, and
causes the function clock signal 124 to transition from a
logical high level to a logical low level at the falling edge
351.
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The transition of the selected source clock signal 122
from a high logical level to a low logical level at a falling
edge 352, which occurs at reference point 324, causes the
XOR logic functionality of the NAND gates 282-288 to
initiate another rising edge 354 of the function clock signal
124. The rising edge 354 occurs a short time after the time
reference 324. The rising edge 354 clocks the low logical
level of the C signal 310 through the flip-flop 296 as the D
signal 304, thereby creating a falling edge 356 at a time
which is slightly after the rising edge 354. After a time delay
caused by the delay element 298 and the inversion caused by
the inverter 300, a rising edge 358 of the B signal 308
occurs. The propagation delay through the XOR gate 302
causes a rising edge 360 of the C signal 310 to occur. The
propagation delay through the XOR gate 292 causes the A
signal 292 to assert a falling edge 362 at approximately the
time reference 326. The change in logical state of the A
signal 290 at time reference 326 causes the XOR logic
functionality of the NAND gates 282-288 to change the
high logical state of the function clock signal 124 to a low
logical state at the falling edge 363, after a slight propaga-
tion time delay through the NAND gates 282-288. The
functionality just described continues with each subsequent
cycle of the selected source clock signal 122 so long as the
rising edge primary signal 244 is asserted.

When the rising edge primary signal 244 is negated, as a
shown in FIG. 7, the XOR gate 292 ceases functioning as an
inverter and starts functioning as an OR gate. Consequently,
the A signal 290 is no longer an inverted copy of the B signal
308, which is the situation illustrated in FIG. 6. Instead, as
illustrated in FIG. 7, the previous state of the A signal 290
remains unchanged for the duration of the first half-cycle (as
shown) of the selected source clock signal 122 between
references 320 and 324. The constant state of the A signal
during the first half-cycle of the selected source clock signal
122 causes the XOR logic functionality of the NAND gates
282288 to asserting the function clock signal 124 at the low
state during the same time period. It is only after the selected
source clock signal 122 changes states at the end of the first
half-cycle at the first reference point 324, that the function-
ality of the function clock generator 240 resumes.

Referring now to FIG. 7, the rising edge 354 of the
function clock signal 124 clocks the logical level of the C
signal 310 through the flip-flop 296, causing a rising edge
364 of the D signal 340. After a time delay through the
element 298 and inversion by the inverter 300, the D signal
340 causes the B signal 308 to fall at a falling edge 366. The
B signal 308 propagates through the XOR gate 302 causing
a falling edge 368 of the C signal 310. Approximately
simultaneously, a falling edge 370 of the A signal 290 occurs
as a result of a similar propagation through the XOR gate
292. The simultaneous low levels of the selected source
clock signal 122 and the A signal 290 at the time reference
326 causes a falling edge 372 of the function clock signal
124 after a slight time delay through the NAND gates
282-288.

The next rising edge 342 of the function clock signal 124
clocks the C signal 310 through the flip-flop 296 and causes
a falling edge 374 of the D signal 340. After a time delay and
an inversion, a rising edge 376 of the B signal 308 occurs,
thereby causing rising edges 378 and 380 of the C signal 310
and the A signal 290, respectively. The change in state of the
A signal 290 at the time reference 322 causes the XOR
functionality of the NAND gates 282288 to terminate the
high level of the function clock signal at a falling edge 382.

In the manner illustrated by FIG. 7, the negation of the
rising edge primary signal 244 causes the dual edge function
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clock generator 240 to generate the rising edges 354 of the
function clock signal 124 with reference to the falling edges
352 of the selected source clock signal 122. Under this
condition, the falling edges 352 of the selected source clock
signal 122 are the primary edges, because it is with respect
to those falling edges 352 that the rising edges 354 of the
function clock signal 124 are generated. Conversely in the
manner illustrated by FIG. 6, the assertion of the rising edge
primary signal 244 causes the rising edges 354 of the
function clock signal 124 to be generated with reference to
the rising edges 340 of the selected source clock signal 122.
Two cycles of the function clock signal 124 still occur for
each cycle of the selected source clock signal 122 in both
cases.

The effect of asserting the alternate inhibit signal 126 at
a falling edge of the selected source clock signal 122 is
illustrated in FIG. 8. The conditions shown in FIG. 8
assumes that the rising edge primary signal 244 is asserted
at a high level. The same functionality of the function clock
generator 240 occurs during the first full cycle of the
selected source clock signal 122 between the first and
second time reference points 320 as shown, as the function-
ality which has been described in conjunction with FIG. 6.
However, during the second full cycle of the clock in signal
between the second and third time reference points 320 as
shown, a high alternate inhibit signal 126 is asserted. A
rising edge 400 of the alternate inhibit signal 126 occurs at
a time reference 402. Arising edge 404 of the function clock
signal 124 has occurred prior to the time reference 402, and
that rising edge 404 has clocked the high level C signal 310
through the flip-flop 296 to cause a rising edge 406 of the D
signal 304.

In the manner previously described, the D signal 304 is
inverted and time delayed to create the B signal 308. The B
signal 308 transitions to a low logical level at a falling edge
408. The low level of the B signal 308 following the falling
edge 408 is propagated through the XOR gate 292. The XOR
gate 292 functions as an inverter because of the assertion of
the rising edge primary signal 244, causing a rising edge 410
of the A signal 290. The logic high level of the A signal 290
after the rising edge 410 and a logic low signal of the
selected source clock signal 122 at the falling edge 411
combine in the XOR logic functionality of the NAND gates
282-288 to change the output level of the function clock
signal 124 and create a falling edge 422.

The assertion of the alternate inhibit signal 126 to the
XOR gate 302 at the time reference 402 causes the XOR
gate 302 to function as an inverter with respect to the B
signal 308, rather than as an OR gate as it did prior to the
assertion of the alternate inhibit signal 126. Functioning as
an inverter, the XOR gate 302 causes the C signal 310 to
transition to a low state at a falling edge 414. Prior to the
assertion of the alternate inhibit signal 126, the XOR gate
302 caused the C signal to assume a logical high state as is
shown between the rising edge 360 and the falling edge 414.
However, because the B signal 308 has just transitioned to
a logic low level at its falling edge 408, the transitioned B
signal 308 causes the XOR gate 302 to change the C signal
310 back to a logic high level at the rising edge 416.

Meanwhile, the selected source clock signal 122 transi-
tions to a logic low level at the falling edge 411. The XOR
functionality of the NAND gates 282288 causes the func-
tion clock signal 124 to change states at a rising edge 418.
The rising edge 418 clocks the logic high level of the C
signal 310 through the flip-flop 296, causing a logic high
level in the D signal 304. Prior to this event, the D signal 304
was already at a high logical level starting from the rising
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edge 406. Therefore, no change occurs in the logic level of
the D signal 304. Because there is no change in the D signal
304, there is also no change in the B and A signals 308 and
310.

Since the A signal 290 does not change, the next change
of state of the function clock signal 124 occurs as a result of
a rising edge 420 of the selected source clock signal 122.
The logical high levels of the selected source clock signal
122 and the A signal 290 after the rising edge 420, causes the
function clock signal 124 to transition to a logic low level at
a falling edge 422. The function clock signal 124 remains in
a logic low level until the occurrence of the time reference
324, at which time the selected source clock signal 122
transitions from a logic high to a logic low level at the falling
edge 423. This transition causes a rising edge 424 of the
function clock signal 124. Notice that the logic high state of
the A signal 290 remains asserted for more than an entire
cycle of the selected source clock signal 122. By inhibiting
the next rising edge 418 of the function clock signal after the
assertion of the alternate inhibit signal 126, the subsequent
falling edge 422 and the subsequent rising edge 424 of the
function clock signal 124 are derived solely by the change
in logic levels of the selected source clock signal 122,
because the A signal 290 remains in an unchanged logic
state. Thus, the alternate inhibit signal 126 inhibits the next
rising edge of the function clock signal 124 occurring at its
normal frequency, but the XOR logic functionality of the
NAND gates 282-288 completes the definition of the
extended cycle of the function clock signal at the same
frequency as the selected source clock signal 122.

In essence, the assertion of the alternate inhibit signal 126
changes the logical state of the C signal 310, causing the
next rising edge 418 of the function clock signal 124 not to
cause a change in state of the D signal 304, the B signal 308,
or the A signal 290. These signals 304, 308 and 290 remain
unchanged for the next two selected source clock signal 122
edge transitions. A full cycle of the function clock signal 124
occurs at the same frequency as the selected source clock
signal 122.

If the alternate inhibit signal 126 remains asserted for
more than one period of the selected source clock signal 122,
the logic levels of the A signal 290, the B signal 308, the C
signal 310 and the D signal 304 remain unchanged for the
duration of that alternate inhibit signal. It is necessary for a
rising edge of the function clock signal 124 to occur before
the flip-flop 296 is clocked. However when the rising edge
of the function clock signal 124 does occur, for example the
rising edge 424, the levels of the C signal 310 and the D
signal 304 are the same as a result of the assertion of the
alternate inhibit signal 126, resulting in no changes in the
logic levels of the A signal 290, the B signal 308 and the C
signal 310. By retaining the unchanged logic level of the A
signal 290, the rising and falling edges of the function clock
signal 124 are defined entirely by the rising and falling edges
of the selected source clock signal 122, through the XOR
logic functionality of the NAND gates 282-288.
Consequently, the function clock signal 124 continues to
exhibit the same frequency as the frequency of the selected
source clock signal 122.

After the alternate inhibit signal 126 is negated to a low
logic level, the function clock generator 240 assumes normal
operation with the frequency of the function clock signal
124 being twice the frequency of the selected source clock
signal 122. The C signal 310 remains high until a falling
edge 426 of the alternate inhibit signal 126 occurs, which is
shown in FIG. 8 as occurring at time reference 408. The
falling edge 426 of the alternate inhibit signal 126 causes the
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XOR gate 302 to again function as an OR gate. Thereafter,
the XOR gate 302 causes the C signal 310 to transition from
the logic high level to the logic low level at a falling edge
428.

Thus, the practical effect is that so long as the alternate
inhibit signal 126 is asserted, the frequency of the function
clock signal 124 is reduced by half to the frequency of the
selected source clock signal 122. Of course, reducing the
frequency of the function clock signal 124 has the effect of
reducing the rate at which instructions are executed. This has
the practical effect of slowing the execution of instructions
by the interface 100. However, slowing the execution of
certain instructions has the beneficial effect of actually
increasing the efficiency of I/O transfers through the inter-
face 100, as well as having the effect of saving power or
reducing power consumption, as is described below.

FIG. 9 illustrates the situation of asserting the alternate
inhibit signal 126 at a rising edge of the selected source
clock signal 122. The functionality of the function clock
generator 240 is the same as has been previously described
in conjunction with FIG. 8, between the time reference 320
and a time reference 430 shown in FIG. 9. At time reference
430, the alternate inhibit signal 126 is asserted and transi-
tions from a logic low level to a logic high level at a rising
edge 432. The rising edge 432 of the alternate inhibit signal
126 occurs prior to the rising edge 450 of the selected source
clock signal 122, and after the occurrence of the preceding
falling edge 352. The change in logic level of the alternate
inhibit signal 126 at the input of the XOR gate 302 causes
a rising edge transition at 434 of the C signal 310. The high
to low transition of the D signal 304 at the falling edge 356
causes the D signal 308 to transition from a low to high level
at the rising edge 356. The transition from the low to high
state of the B signal 308 at the edge 357 is applied to the
input terminal of the XOR gate 302, which causes the C
signal 310 to transition from the high to low level at a falling
edge 436.

The transition at the next rising edge 438 of the function
clock signal 124 does not change the logic level of the D
signal 304 when the C signal 310 is clocked through the
flip-flop 296. Instead, the prior states of the D signal 304, the
B signal 308, and the A signal 290 remain as they were
before the flip-flop 296 was clocked. A transition of the
function clock signal 124 therefore can occur at a falling
edge 442 only when the selected source clock signal 122
transitions at its falling edge 440. Moreover, because a rising
edge of the function clock signal 124 will not occur until
rising edge 446, the logic levels of the A signal 290, the B
signal 308, the C signal 310 and the D signal 304 remain in
their existing logic levels until the occurrence of a rising
edge 448 of the selected source clock signal 122, thus
completing the cycle of the function clock signal between
the edges 438 and 446 at the frequency of the selected source
clock signal 122.

After the alternate inhibit signal 354 is negated at falling
edge 444, no change can occur until the next rising edge 446
of the function clock signal 124. However the next rising
edge 446 of the function clock signal 124 is only generated
after the selected source clock signal 122 transitions to from
a logic low to a logic high state at the rising edge 448. By
the time that the rising edge 448 occurs, the function clock
signal 124 will have executed one complete cycle at the
frequency of the selected source clock signal 122, as shown
between the rising edge 438 and the rising edge 446 of the
function clock signal 124.

FIG. 9 illustrates the condition of asserting the alternate
inhibit signal 126 at a rising edge 450 of the selected source
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clock signal 122. FIG. 8 illustrates the assertion of the
alternate inhibit signal 126 at a falling edge 411 of the
selected source clock signal 122. In both cases, the function
clock signal 124 assumes the frequency of the selected
source clock signal 122 for one cycle of the selected source
clock signal 122 beginning with the edge upon which the
alternate inhibit signal 126 was asserted. In both cases, the
frequency of the function clock signal 124 is reduced to and
made the same as the frequency of the selected source clock
signal 122.

FIGS. 8 and 9 also illustrate the effect of a slight glitch in
the C signal from the XOR gate 302 which occurs because
of the assertion of the alternate inhibit signal 126 prior to the
assertion of the B signal 308 at time reference 357. This
glitch is shown in FIG. 8 between the edges 414 and 416 of
the C signal 310, and by the glitch shown between the edges
434 and 436 of the C signal 310 shown in FIG. 9. However,
this glitch has no adverse influence on the operation of the
function clock generator 240 because the glitch will have
settled prior to the next rising edge of the function clock
signal 124. It is only with a rising edge of the function clock
signal 124 that the change in state of the function clock
generator 240 can occur.

The functional characteristics of the function clock gen-
erator 240, are advantageously used with the I/O segment of
the interface 100, shown in FIG. 3. As shown there, the 1/0
segment is formed by the data queue 152, the data path
elements 154 and the internal I/O logic interface 136. More
details concerning these elements 152, 154 and 136 are
shown in FIG. 10. A convention used in FIG. 10 is that the
wide lines describe multi-bit wide parallel signal paths,
while the narrow lines described single bit wide paths. All
multi-bit paths are 8 bits wide except for those associated
with the bit counter 514 and bit counter 532 including paths
158, 534 and 528.

As shown in FIG. 10, the data queue 152 (FIG. 3) is
formed by an address register (Reg. A) 480, a high order data
out register (Reg. DoH) 482, a low order data out register
(Reg. DoL) 484, a high order data in register (Reg. DiH) 486
and a low order data in register (Reg. DiL) 488. These
registers 480—488 are connected to the internal bus 106 to
enable communication of information between these regis-
ters and the embedded processor 104 (FIG. 1) over the
system bus 106. The address register 480 is preferably an 8
bit register which is write only from the internal bus 106 and
read-only to the remainder of the interface 100. The address
register 480 is used by the embedded processor 104 (FIG. 1)
to supply address information the address transfer phase of
a serial interface bus protocol that includes an explicit bus
transfer phase. The high and low order data out registers 482
and 484 are each preferably 8-bit registers which are write
only from the internal bus 106 and read-only to the interface
100. In cases where the internal bus is greater than 8 bits
wide, data from both the high order register 486 and the data
from the low order register 484 are supplied to form a 16 bit
wide word. The data which is to be transmitted or output by
the interface 100 is transferred to the data out registers 482
and 484 from the internal bus 106. The high and low order
data input registers 486 and 488 are also each preferably 8
bit registers which are read-only to the internal bus 106 and
write only from the interface 100. In those cases where the
internal bus 106 is 16 bits wide, both the data from the high
order register 486 and the data from the low order register
488 are supplied. Data which is received by the interface and
which is to be communicated to the other components of the
system chip 102 is supplied by the interface 100 to the data
in registers 486 and 488, and thereafter is read from those
registers 486 and 488 over the system bus 106.
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The internal I/O logic interface 136 (FIG. 3) is formed by
a4 to 1 data output multiplexer 490 to which an output latch
492 is connected. This 4 to 1 multiplexer 490 allows the
generation of logic 0 and logic 1, serial output from the SR
register or from the F (flag) flip-flop. The output latch 492
is connected to supply output signals from the multiplexer
490 to the conductor 496. A3 to 1 data input multiplexer 494
is also part of the internal I/O logic interface 136. The zero
terminal of the multiplexer 494 is connected to the latch 492.
The output signals supplied from the data out multiplexer
490 is presented on conductor 496 as serial data out signals
(SDO). In the case of half duplex transmissions, the data out
supplied at 496 is referred to as serial data out (SDO). In the
case of full duplex communication, the data out supplied at
496 is referred to as serial data I/O out (SDIOout). In
addition, the signals on conductor 496 may be conducted
back internally through the data in multiplexer 494. Sup-
plying this output data back to the interface is useful for
loopback testing of the interface and the embedded proces-
sor 104 (FIG. 1).

The one and two input terminals of the data in multiplexer
494 are connected to receive serial data input signals at 498
and 500, respectively. The serial data I/O signals (SDIOin)
498 result from full duplex communication. The serial data
in signals 500 (SDI) result from half duplex communication.
The output signals from the data in multiplexer 494 occur at
502 and are referred to as data in (Din) signals. The data in
(Din) signals 502 may be any of the signals applied at 496,
498 and 500, passed through the data in multiplexer.

The latch 492 is used to hold the value of the data out
signal 496 during portions of full-duplex, split-clock
operation, thereby preventing captured input data from feed-
ing through as data output signals 496. A Data out latch
enable control signal (DoLE) 504 is asserted to close the
latch 492 and is negated to open the latch. The data out latch
enable control signal 504 is always negated except in cases
of full duplex, split clocking serial data communication.

The remaining components of the data path segment
shown in FIG. 10 form the data path elements 154 (FIG. 3).
A serialization register (SR) 506 is a key component of the
data path segment. The serialization register 506 holds the
byte undergoing parallel-to-serial conversion for output and/
or serial-to-parallel conversion for input. The serialization
register 506 may be used to both output serialization and
input de-serialization when performing full duplex transfers.
The serialization register 506 is an eight-bit parallel register.
The serialization function is performed by an 8 to 1 multi-
plexer 508 which selects one bit of the serialization register
506 designated by a bit counter 514 to be provided to the
output multiplexer 490. De-serialization is performed by
merge logic 520 as driven by a 3 to 8 decoder 517, as
discussed below.

One of the advantages of using the serialization register
508 as a 8 bit parallel register, which is connected to the
multiplexors 508 and 490, is that as soon as the data is
present in the serialization register 506, and the bit counter
114 is set to control multiplexor 508 (assuming multiplexer
490 is set to select the output of multiplexer 508), the first
bit signal of data is immediately presented as output at 496.
This avoids the problem of requiring one or more clock
signals to shift out the first bit signal of data, which would
be required if the serialization register 506 was formed as a
shift register. One advantage of this arrangement is that the
first bit out does not have to be the high order or the low
order bit, and there is uniform time for that bit to be
presented, because it is being selected from a parallel
register by a multiplexer, rather than having to be shifted to
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the end of the register to reach the output. Another advantage
of this arrangement is that, when a the data output function
is enabled, loading the serialization register 506 causes the
appropriate first bit to reach the output at 496 by simple
propagation very quickly through a few stages of logic. This
means that a single clock edge that executes an instruction
that loads the serialization register 506 from one of the
registers 480, 482 and 484 can also make the first bit
available as output at 496 regardless of where in the byte that
first bit is located. This offers a significant improvement over
conventional hard wired, multi-mode interfaces that need
intermediate clocks to shift the bits into the shift registers
and into the right positions in the shift registers. The use of
the multiplexors 526, 508 and 490, in conjunction with the
serialization register 508 and the bit counter 514, does not
require such internal clocks, and as a result, enables the
interface 100 to operate at a relatively low clock rate of the
selected source clock signal 122.

Serialization of the contents of the serialization register
506 is accomplished through an 8 to 1 serialization multi-
plexer 508, which is connected between the output of the
serialization register 506 and the data out multiplexer 490.
Deserialization is accomplished by merging a serial input bit
(Din) applied at 512 into a position in the serialization
register 506 selected by a three-bit value in a bit counter (B)
514. The three bit value in the bit counter 514 is conducted
through three XOR gates 516 as a bit position control signal
515 which is applied to both the serialization multiplexer
508 and to a 3 to 8 decoder 517. The decoder 517 selects the
desired position for the serial input bit in accordance with a
position control signal 515 and applies the selected selection
signal 518 to an 8 bit wide AND/OR bit merge logic 520.

The merge logic 520 includes an array 521 of eight AND
gates. A copy of the data in signal 502 is applied to each of
these and gates along with the signals 518 from the decoder
517. Another array 523 of eight AND gates receives one
copy each of the output signal 522 from the serialization
register 506, and the inversion of the signal 518 from the
decoder 517. The logical outputs from the AND gate arrays
521 and 523 is applied to an array 525 of 8 OR gates. The
logical results of the OR gate functionality is a signal at 524
which is formed by seven of the old bits and one new bit
from 502.

A data path multiplexer 526 supplies selected ones of four
input signals as the data in signal 512 to the serialization
register 506. The zero input terminal of the data path
multiplexer 526 receives address signals from the address
register 480. The one input terminal of the multiplexer 526
receives the low order data byte from the low order data
register 484. The two input terminal of the data path
multiplexer 526 receives the high order data byte from the
high order data register 482. The three input terminal of the
data path multiplexer 526 receives the output signal 524
from the logical network 520.

A feedback path by which to keep the data in signal 512
equal to the SR output signal 522 is established through the
merge logic 520. This feedback functionality in conjunction
with the bit counter 514, the multiplexer 508 and the decoder
517 allows repeated execution of a single instruction for
successive input bits, without the necessity to perform the
typical state transition steps of fetching the instruction,
decoding the instruction and executing the instruction, and
thereafter incrementing the program counter and returning to
a state ready to fetch the next instruction. As a result of this
feedback functionality, it is unnecessary to clock through as
many states as would otherwise be required, and it is
unnecessary to have as many different instructions as might
otherwise be required.
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The bit counter 514 is preferably a three bit, synchronous
up counter with synchronous load and asynchronous reset. A
value of the bit counter 514, supplied at 528, is reset to zero
when the serialization register 506 is loaded. The value 528
of the bit counter 514 is loaded from the low order three bit
of an instruction byte supplied from the instruction decoder
150 (FIG. 3) at 158. The low order three bits of the value of
the address register 480 are also supplied to the load value
selection multiplexer 530, and these three bits can also be
used to load the bit counter 514.

When counting, the value of the bit counter 514 is
incremented by one, with wraparound from bit 7 to bit 0, by
each execution or repetition of certain instructions. The bit
counter 514 increments on rising edges of the function clock
signal 124. The bit counter 514 counts up, which provides
direct support for the least significant bit first (little endian)
bit ordering. To perform most significant bit first (big
endian) bit ordering is accomplished by complementing the
value of the bit counter 514 by asserting a big endian control
signal 538 into the XOR gate 516. The bit counter 514 is an
up counter, the position control signal 515 can be made to
countdown by the application of the big endian control
signal 538 applied to the XOR gate 516. When the big
endian control signal 538 is negated, the XOR gate 516
functions as an OR gate. When the big endian control signal
538 is asserted, the XOR gate 516 functions as an inverter
to invert the value from the bit counter 514. Inverting the
incrementing count value from the bit counter is the equiva-
lent of decrementing the count value as far as the position
control signal 515 is concerned. However, by using an up
counter the end of byte condition is uniformly the rollover
of the value of the bit counter 514 from 7 to 0.

An output value 534 from the load value selection mul-
tiplexer 530 is applied to a repeat counter 532 as well as to
the bit counter 514. The repeat counter 532 is a down
counter with synchronous load and asynchronous reset. The
repeat counter 532 is used for a variety of purposes, includ-
ing counting the number of repetitions of specific instruc-
tions executed by the instruction decoder 150 (FIG. 3). A
value of the repeat counter 532 is loaded with a load
instruction, by the output value 534 selected by the load
value selection multiplexer 530. The value of the repeat
counter 532 is supplied at 536.

In the following discussions of instructions executed by
the reprogrammable interface 100, the value in the bit
counter 514 is referred to as a “B” value, and the value in the
repeat counter 532 is referred to as the “C” value.

The functionality of the interface 100 is the achieved by
the use of a relatively small number of instructions recorded
in locations of the instruction store 144 (FIG. 3). The
function clock generator 240 (FIGS. 4 and 5) and the I/O
section 152/154/136 (FIG. 10) combine with extensive
control functionality available from a small number of the
instructions to achieve significantly functional efficiency in
performing I/O transfers without consuming power by
requiring an extensive number of clock cycles and while
implementing the entire functionality of the reprogram-
mable interface 100 in a relatively small amount of space on
the system chip 102 (FIG. 1). Another significant feature of
this data path and instruction set is that is that typical serial
protocols can be implemented using sequences of instruction
words that are only eight bits long, in contrast to other
processors and controllers which routinely require instruc-
tions of a much larger number of bits. The eight bit instruc-
tions permit reductions in size of the instruction store 144,
thereby helping to minimize the size of the interface 100.

The instructions stored in the program store 144 (FIG. 3)
include those which execute many typical and well-known
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processing functions, such as load and store instructions
which read values or data into registers or memory, a strobe
instruction which asserts a specified discrete control signal
to achieve certain effects, a conditional skip instruction
which allows one or more of addresses of subsequent
instructions to be skipped over, a branch instruction which
performs an unconditional absolute branch to a specified
target address of an instruction, and a loop instruction that
performs a conditional relative branch backward to an
address before the loop instruction. These typical instruc-
tions are not described herein further detail because of their
conventional nature. However, certain instructions are
described below a detail because they provide highly effi-
cient functionality for the reprogrammable interface 100.

The fields or components of delay instruction 550 are
shown in FIG. 11. The delay instruction 550 delays the
further execution of any instruction for a number of cycles
of the function clock signal 124 which are specified in a
count field 552 formed by bits 0 and 1 of the instruction 550.
In the example shown in FIG. 11, a 2 bit count field is used.
The count field could be wider to permit longer delays if
needed by interface requirements and allowed by the num-
ber of code bits available. The value of the count field 552
(C) is loaded into the repeat counter 532 (FIG. 10). A value
of 0 in the count field 552 produces a NOP instruction. In
essence, no instruction is executed and the NOP instruction
simply consumes one cycle of the function clock signal. A
value of 1 in the count field 552 delays the execution by one
cycle of the function clock signal (for a total of 2 cycles of
the function clock signal) when the function clock signal is
also oscillating at its normal frequency of twice the selected
source clock signal 122. The delay caused by a count value
of 1 in the count field 552 is achieved by asserting the
alternate inhibit signal 126. Values in the count field 552
greater than 1 execute periods, not edges, of the selected
source clock signal 122 (selected source clock signal 122),
so in this case timing is not affected by the one edge signal.

Examples of the effects from the delay instruction 550 are
shown in FIG. 12, as referenced to the selected source clock
signal 122 (selected source clock signal 122). In these
examples, the effects of the delay (NOP) instructions 550 on
the sequential execution of various instructions A, B, C, D,
E, F and G is shown. In the examples shown in rows 554,
556, 558 and 560 the one edge signal 250 (FIG. 4) is
negated, but in the example shown in rows 552, 554, 556 and
558, the one edge signal is asserted. At row 554, instruction
is executed at the first rising edge of the function clock
signal 124. This instruction is followed by the execution of
a NOP instruction at the second rising edge of the function
clock signal. The execution of this NOP instruction con-
sumes one cycle of the function clock signal, the time of
execution of instruction B after instruction A. Thereafter,
instructions C to G occur in sequence.

As shown at row 556 in FIG. 12, a delay 1 instruction is
executed after the instruction A. The delay 1 instruction is
executed by asserting an alternate inhibit signal 126, which
has the effect of delaying the execution of instruction B until
the next subsequent rising edge of the function clock signal
124. Thus, the execution of the delay 1 instruction has in
essence delays the execution of the instruction B for two
cycles of the function clock signal 124.

As shown at row 558 in FIG. 12, a delay 2 instruction is
executed after the A instruction. In executing the delay 2
instruction, the value in the repeat counter 532 (FIG. 10) is
set to a value of 2. This causes the alternate inhibit signal
126 to be asserted for two complete cycles of the selected
source clock signal 122, to delay the execution of instruction
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B for that many cycles of the selected source clock signal
122. Because of the relative timing between the selected
source clock signal 122 and the function clock signal 124,
this delay amounts to the time that would be consumed by
4 cycles of the normal higher frequency function clock
signal 124. A similar situation exists in row 560, with respect
to the delay 3 instruction, except that in this circumstance
the execution of instruction B is delayed by 3 cycles of the
selected source clock signal 122 and 6 cycles of the normal
higher frequency function clock signal 124.

Rows 562, 564, 566 and 568 correspond to the effects
described in rows 554, 556, 558 and 560, respectively,
except that the one edge signal 250 is asserted. Asserting the
one edge signal 250 (FIG. 4) causes the frequency of the
function clock signal 124 to equal the frequency of the
selected source clock signal 122, with aligned edges
between these signals. The assertion of the one edge signal
250 is used for applications of the programmable interface
where the alternate edge of the selected source clock signal
122 is never required, as is the case for very simple serial
protocols. With these equal frequency signals, the execution
of the NOP instruction in row 562 consumes one cycle of
both the function clock signal 124 and the selected source
clock signal 122. The execution of the delay 1 instruction,
shown in row 564, delays the execution of instruction B for
1 cycle of the function clock signal 124 and the bit cell
counting signal. The execution of a delay 2 and a delay 3
instruction, shown in rows 566 and 568, delays the execu-
tion of instruction B for two complete cycles and three
complete cycles of the function clock signal, respectively.
Because the function clock signal 124 has the frequency of
the selected source clock signal 122 and the delay instruc-
tion is measured with respect to complete cycles of the bit
cell counting signal, the odd delay of an additional cycle of
the function clock signal 124 does not result in the examples
shown in rows 566 and 568 as compared to the examples
shown in rows 558 and 560.

Because of the high efficiency in I/O transfers achieved by
the other instructions used in their reprogrammable interface
100, the delay and NOP instructions 550 are not frequently
used. However, when they are used, the delay 1, delay 2 and
delay 3 instructions serve the purpose of executing the next
instructions on the same type of edge, primary or secondary,
of the instruction proceeding the delay. This utility is valu-
able in aligning other instructions for synchronization pur-
poses. If longer delays than 3 (6 edges) are needed in a
particular instance of the programmable interface, the
C-field of the delay instruction (FIG. 12) could be widened
to 3 bits as is shown for the OUTnxb and INbnx instructions
(FIG. 15). The NOP instruction causes the next instruction
to execute at the opposite type of edge. The other improve-
ment from the delay 1, delay 2 and delay 3 instructions is
that it is not necessary to execute a separate instruction for
each function clock cycle when delays of multiple function
clock cycles are required. Consequently, the instructions
remain idle during the time period of the multiple function
clock cycles and power is not consumed in executing any
instructions during those function clock cycles.

A wait instruction 590 is illustrated in FIG. 13. The wait
instruction 590 postpones completion of execution of the
instruction following the wait instruction, until the first
primary clock edge on which the specified event is asserted.
Typical events include loading of the address or data output
registers 480, 482 and 484 (FIG. 10) from the internal bus
106, reading the data input registers 486 and 488 to the
internal bus 106, assertion discrete control inputs from
external device, or expiration of a predefined time interval.
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If the event is asserted when the wait instruction is executed,
the next instruction is executed without delay. The wait
instruction has the property of always resuming execution
on a primary edge. This is useful because an instruction
sequence following the wait has a known phase relationship
with the polarity of the selected source clock signal 122.

An important improvement available from the present
invention is the ability to perform certain instructions,
primarily multibit I/O transfers, by repeated sequential
application of a single instruction over a predetermined
number of bit cells. An OUTbnx instruction and an INnxb
instruction are respectively used to transfer out each next bit
in a series and to transfer in each next bit in a series, by
fetching a single instruction and repeating its execution
multiple times to transfer for up to seven bits in the series.
The OUTnxb and INbnx instructions 600 are similar, as
shown in FIG. 14, with the bit in a field 602 distinguishing
the two instructions.

The OUTnxb and INbnx instructions 600 allow up to
seven sequential bits to be shifted from and/or to the
serialization register 506 (FIG. 10) without requiring a
multi-instruction loop. The repeat functionality of the
instructions 600 is based on the value in a three bit repeat
field 604. Repetition counts of 2—7, but not 8, are provided
because, because within eight bit serialization register 506
(FIG. 10), it is generally necessary to handle at least one of
the first or the last bits of each eight-bit byte differently from
the other seven bits of the byte.

A value of 1 in the repeat field 604 transfers a single bit
in and/or a single bit out, and asserts the alternate inhibit
signal 248/126 to the function clock generator 240. This
causes instruction execution to consume a full cycle of the
selected source clock signal 122. By skipping the alternate
clock edge, the execution of the instructions remain aligned
on the same edge of the selected source clock signal 122
(clocking and signal 232) at the end of this instruction. The
bit counter 514 (FIG. 10) selects the bit position within the
serialization register 506, and is incremented by one during
each repetition of this instruction.

Count values greater than Itransfer or count sequential
bits to and/or from the serialization register 506 in a selected
order. The count values 2—7 as coded in the repeat field 604
and are loaded into the repeat counter (C) to perform the
repetition. The bit counter 514 selects the starting bit posi-
tion within the serialization register 506, and is incremented
by one for each each bit of repetition. These instructions
execute in full bit cell cycles, as is discussed above. Each bit
is input and/or output at the same edge, on successive cycles
of the selected source clock signal 122, as the first edge used
by the current instruction. The repeat counter 532 (FIG. 10)
is used to count these repetition clock cycles.

Both the OUTnxb and the INnxb instructions increment
bit counter 514 on each of their repeated execution. For the
output function obtained by executing the OUTnxb
instruction, the effect of incrementing the bit counter 514 is
to cause the next sequential bit to appear at 496 (FIG. 10).
For the input function obtained by executing the INnbx
instruction, the effect of the data in signal at 502 is sampled
in parallel with incrementing the bit counter 514, so the
input function stores the sample data in the present bit
position and increments so the next input signal will occur
to the next incremental bit position.

The use of an OUTnxb instruction to shift out data during
half duplex communication is illustrated in FIG. 15, relative
to the cycles of the bit cell counting signal 122 and the
function clock signal 124. The OUTnxb instruction has
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incremented the bit counter (B) 514 at the execution clock
edge, causing the data out (Dout) signal 496 to change
because the data output multiplexer 490 selects a different
bit from the serialization register 506 (FIG. 10). Each
incrementing value of the bit counter (B count) causes
another bit from the serialization register (SR) to be shifted
out. One bit is shifted out on each cycle of the selected
source clock signal 122, as a result of asserting the alternate
inhibit signal to cause the function clock signal 124 to
oscillate at the frequency of the selected source clock signal
122.

Similar functionality for executing the INbnx instruction
to shift in serial data is illustrated in FIG. 16, except that the
post increment aspect of the instruction is illustrated. The
serialization register (SR) is clocked to update the one bit
location selected by the bit counter (B) via the merge logic
520 (FIG. 10).

In both of the examples illustrated in FIGS. 15 and 16, the
big endian enable control signal 538 (FIG. 10) is asserted to
cause the selected bit in the serialization register to count
down as the value of the bit counter 514 (B count) counts up.
Also, because only data input or data output are relevant at
any particular time during half duplex communications, the
output latch 492 (FIG. 10) is not used (remains transparent)
during such transfers.

FIGS. 17 and 18 illustrate the execution of an OUTnxb
and INbnx instruction, respectively, under conditions of full
duplex in and out. Where a consecutive edge of the selected
source clock signal 122 is used for both input and output.
The I/O functions for the OUTnxb and the INbnx instruc-
tions are identical. The functionality achieved by the OUT-
nxb and INbnx instructions shown in FIGS. 17 and 18 is also
identical to the combined functionality discussed in con-
junction with the half duplex examples shown in FIGS. 15
and 16. The bit counter 514 (FIG. 10) is incremented on the
same clock edge that the input bit is stored to the pre-
incremented bit position in the serialization register (SR)
506. Consequently the latch 492 (FIG. 10) remains trans-
parent during these full duplex transfers. In the execution of
the instructions OUTnxb and INbnx shown in FIGS. 17 and
18, the bit counter 514 (B count) is incremented on the same
edge that the data is sampled.

FIGS. 19 and 20 respectively illustrate the execution of
the OUTnxb and INbnx instructions under full duplex
conditions when opposite clock edges are used for shift-out
and shift-in. This effect is the so-called split clocking. In the
case illustrated in FIG. 19, on the first execution edge, the bit
counter (B count) is incremented and the data out is selected
or updated. The input data is sampled at the following
opposite edge. The successive bits in the serialization reg-
ister 506 are output and input on the same respective clock
edges of sequential bits cells until all relevant bits of the
serialization register have been processed. The situation
shown in FIG. 20 is except that the input sampling occurs at
the first of the clock transition and the output updates at the
second clock transition. In that case, the data is first sampled
at the execution edge of the function clock signal and the
data out is transmitted at the next following opposite edge.

When split clocking is enabled, the latch 492 (FIG. 10) is
always closed for one-half of a bit cell starting at the same
clock edge which is used to sample the input data. Opening
and closing the latch 492 is accomplished by negating and
asserting, respectively, the data out latch enable signal
(DoLE) 504. Closing the latch 492 (FIG. 10) under these
conditions prevents the captured input data in the serializa-
tion register 506 from feeding through to the data out during
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sampling phase of each cycle of the selected source clock
signal 122. For executing OUTnxb instructions, the latch
492 must be closed during the second-half of each cycle,
starting at the alternate edge. For INbnx instructions, the
output latch must be closed during the first half of each
cycle, starting at the execution edge.

Because the functions executed by these two instructions
are symmetric with respect to the selected source clock
signal 122, either instruction can be used for any split clock,
full duplex transfer. The selection of which instruction to use
for any given transfer sequences is based on the need to
match the available clock edges to asymmetric handling of
byte boundaries. Usually the INbnx instruction is used if the
sequence begins with an input edge, and the OUTnxb
instruction is used if the sequence begins with an output
edge.

An output control (OutCtl) instruction 610 is shown in
FIG. 21. The output control instruction 610 can perform
input and/or output on a single bit to and from the serial-
ization register 506 (FIG. 10) while simultaneously perform-
ing a control function. The field 612 of the instruction 610
is used to code the output function. The field 614 is used to
code the control function. It is possible to hold the output
function while changing the control function, or change the
control function while holding the output function. The
output functions are outputting of a 0, outputting of a 1,
disabling the output during half duplex communications to
set up for input, a single bit of in function, a single bit of out
function, and a hold which does no output function while
performing a control function. The control functions include
a null for just performing an output function, a skip next
which asserts the alternate inhibit functionality, and a variety
of functions each of which set a particular state for discrete
control output and/or data and clock enable signals associ-
ated with the interface 100.

With the reduced set of instructions described above, and
the use of the reprogrammable interface 100, including the
dual edge function clock generator 240, it is possible to
perform an extensive number of I/O operations and func-
tions with relative efficiency and decreased power consump-
tion.

Examples of the manner in which these instructions can
be used efficiently in performing a read and write transac-
tions over a typical short haul serial peripheral interface
protocol bus are shown in FIGS. 24 and 25. When used in
such an application, the reprogrammable interface 100 is
connected to an additional transceiver circuit 700 which
supplies and receives the input and output signals, as shown
in FIG. 22. The I/O control signals 138 from the internal I/O
logic interface 136 (FIG. 3) are supplied to and received
from the transceiver circuit 700. Each signal connection to
each pin 702-708 includes XOR gates on both the output
signal to the driver and input signal from the receiver to
permit programmable inversion of the external signals rela-
tive to the on-chip signals on a pin-by-pin basis. As shown
in FIG. 22, pins 702, 704, 706 and 708 are connected to the
transceivers and drivers. The output signals are supplied
from these pins to external conductors (not shown) after the
signals have been amplified by the driver portions of the
transceivers. Similarly, the input signals are received at these
pins. The pins are typically output connectors of the semi-
conductor package in which the interface 100 and the other
associated components of the system chip 102 (FIG. 1) are
packaged.

It is common that both serial data and control signals are
supplied on separate conductors of such short haul serial
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peripheral interface buses. The transceiver circuit 700 sup-
plies a serial data enable signal (SDE0Q) 626 from pin 702.
The serial data enable signal 626 is present as a control
signal during times of communication of serial data. In
essence, the serial data enable signal 626 is communicated
from the interface initiating a serial transfer to enable a
particular other device attached to the bus. While only SDEO
is illustrated, additional enable signals could be provided if
necessary. Pins 704 and 706 are interconnected data receiv-
ers and devices. Serial data input signals (SDI) 500 (FIG. 10)
are received at pin 704 during full duplex operations. A
serial data direction control output signal (SDDIR) 624 is
also supplied from pin 704 during half duplex operation. The
two logic levels of the serial data direction control signal 624
represent, on a control signal, whether the data is supplied to
or received from the receiver on the half duplex data signal
at pin 706. Pin 706 includes a transmitter for supplying serial
data out signals (SDO) 496 during full or half duplex
communication and a receiver for the input during half
duplex transfers, known as serial data in/out (SDIO) signals
496 and 498 (FIG. 10). Lastly, a clock out signal 627 is
present at pin 708 during the sequence of those bits cells
during which serial data takes place. The clock out signal
627 may be used to synchronize to the receipt of the digital
bit signals which form the data. Pin 708 can also be used as
the clock in signal (CLKin) 134 (FIG. 3) when the data clock
is supplied by the existing interface.

In FIGS. 23 and 24, which respectively illustrate a read
I/0 operation 620 and a right I/O operation 660, the wave-
forms in wider lines represents signals are communicated
externally of the reprogrammable interface 100 as serial data
signals or as control signals. The waveform shown in
narrower lines illustrate signals which are internal within the
reprogrammable interface 100.

Aread I/O operation 620 is illustrated in FIG. 23. The read
I/0 operation 620 is performed during a sequence of 16
sequential bit cells 120, each of which has been numbered
in a row 622. The selected source clock signal 122 defines
the boundaries of each of the bit cells. The selected source
clock signal 122 has its falling edges designated as the
primary edges, as shown. The function clock signal 124 is
shown in relation to the selected source clock signal 122.

The read operation 620 involves supplying an address of
a location, typically a register or a memory byte from which
the data is to be read and made available to the internal bus
106 through the register 488. After supplying the address,
the destination device from which the data is read supplies
or transmits the data back to the interface 100. The interface
100 thereafter clocks or samples that data and transfers it for
use by the other components of the system chip 102 (FIG.
1). Thus, a read operation 620 involves a transmission of
address bit signals which defines a seven bit address, fol-
lowed by a one bit period for half duplex turnaround,
followed by reception of data bit signals which returns an
eight-bit data value. A serial data direction control signal
(SDDIR) 624 assumes a logic low level during the time that
the half duplex SDIO signal is being driven from the
programmable interface, and a logic high level during times
when the SDIO signal is treated as input to interface 100.
The serial data enable signal 626 is asserted as a logic low
level to enable the external peripheral device during each
transaction, and is negated at other times.

Since the interface transmits and receives bit signals in a
serial manner, the interface must decompose multibit
address signals into individual bit signals and transmit those
bit signals individually and in sequential order. The recipient
of the communication must recognize each of the individual
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bit signals and assemble those bit signals into the multibit
values. Similarly, the transmission of data occurs by the
transmission of sequential bit signals in a predetermined
order. The data is serialized from multibit data words into the
individual bit signals, transmitted as a sequence of the
individual bit signals, and is deserialized by the recipient
into the multibit data words.

The address signals constitute the bit signals which are
designated a7, a6, a5, a4, a3, a2 and al, and those bit signals
are transferred out during the bit cells numbered 0 to 6,
respectively, during the read operation 620. The data read
into the interface in the case illustrated in FIG. 23, consists
of a byte defined by 8 bit signals di7, di6, di5, di4, di3, di2,
dil and di0, which are received by the interface during the
bit cells numbered 8 through 15. Bit cell number seven is
provided for half duplex turnaround SDIO. The values of the
data in bit signals are sampled or read by the interface at the
beginning of the boundaries of the bit cells numbered 8 to

For illustration purposes in FIG. 23, the read operation
620 commences at the time reference 628 with the execution
of a wait instruction (590, FIG. 13). The wait instruction is
executed to suspend operation of the programmable inter-
face while waiting for the address register to be written by
the embedded processor 104 (FIG. 1). As a result an arbi-
trary length delay reference 630 occurs. As discussed, the
wait instruction postpones the execution of the next follow-
ing instruction until the first primary edge of the selected
source clock signal 122, which is shown as occurring at time
reference 632. In this case, the condition is the loading of the
address register 480 (FIG. 10) from the internal bus 106 by
the embedded processor 104 (FIG. 1). This occurs allowing
execution to resume on the primary edge of the selected
source clock signal 122. Execution of the wait instruction
aligns the following sequences of instructions to the primary
edge of a selected source clock signal 122, and thereby
permits the instructions to be executed in a known manner
relative to the selected source clock signal 122. A NOP
instruction (550, FIG. 11) is executed at the rising edge
occurring at time reference 632. The NOP instruction
extends over one cycle of the selected source clock signal
122. Following the NOP instruction is a conditional branch
instruction that selects between performing a read operation
and a write operation based on which was requested by the
embedded processor. The conditional branch instruction
drops through to the next instruction because it was
requested with a read instruction.

At the primary edge of the selected source clock signal
122 at time reference 634, which defines the beginning
boundary of the bit cell numbered 0, the I/O read sequence
begins by executing a load control instruction. The load
control instruction transfers the address from the address
register 480 (FIG. 10) to the serialization register 506, while
simultaneously resetting the bit counter 514 to zero,
enabling the delivery of the selected source clock signal 122
as the clock out signal 627, and asserting the serial data
enable signal 626 and the serial data direction signal 624 for
the write operation. The big endian control signal 538 (FIG.
10) has been set during initialization of the programmable
interface to cause all transfers of data in this protocols to
occur on the basis of the most significant bit first. Resetting
the bit counter to zero causes the output selection multi-
plexer 508 to select the bit seven from the serialization
register, which is address bit seven, to be transmitted as the
SDDIR signal 624 as shown. Based on preconfigured I/0
signal usage settings in modal state registers, the clock out
signal 627 is enabled to provide timing reference to the
external peripheral device.
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As a result of the functions achieved by the read instruc-
tion executed at time reference 634, the address bit signal a7
propagates from the serialization register as SDIO output for
the bit cell numbered 0. Because the load control instruction
executed in time 634 occurs on the first cycle of the function
clock signal in the bit cell numbered 0, and the load control
instruction has no provision to perform an alternate inhibit
function, a NOP instruction is executed at time reference 636
to fill the second half of the bit cell numbered 0.

Beginning at time reference 638 with the primary edge of
the bit cell numbered 1, an OUTnxb instruction (600, FIG.
14) is executed with a repeat count of six to cause the
OUTnxb instruction to be repeatedly executed in the six
sequential bit cells numbered 1 to 6. Of course, during
execution of the OUTnxb instruction, the alternate inhibit
signal is asserted to the function clock generator 240 (FIG.
5), which causes the function clock signal 124 to supply one
cycle during each bit cell period, at the same frequency as
the selected source clock signal 122. As a result, the address
bits a6, a5, a4, a3, a2 and al are sequentially supplied during
each sequentially occurring bit cell numbered 1 to 6, respec-
tively. By the occurrence of the bit cell numbered 7, all of
the address bits have been supplied.

When the OUTnxb instruction ends at the beginning of bit
cell numbered 7, the function clock signal 124 resumes its
normal, uninhibited frequency of executing two cycles dur-
ing the bit cell numbered 7. During the first cycle of the
function clock signal occurring in the bit cell numbered 7, at
time reference 640, an output control instruction is executed
to disable the output driver of the SDIO signal path and to
set the SDDIR signal 624 to the proper state for transferring
in the data to be read. An output control instruction permits
the simultaneous performance of an input or an output
function and a control function. The output control instruc-
tion performed at time reference 640 conditions the interface
100 to receive the data bits and causes the serial data
direction signal 624 to be asserted at a logic high-level,
thereby readying the interface to receive the data bit signals.

During the second cycle of the function clock signal
executed during the bit cell numbered 7 beginning at time
reference 644, an instruction to load the bit counter is
executed. The load instruction sets the bit counter 514 (FIG.
10) to zero to cause input in conjunction with the big endian
control signal 538 asserted, the data input to began at bit 7.

Beginning with the bit cell numbered 8 at time reference
646, the first of two INbnx instructions (600, FIG. 14)
commences execution. The first INbnx instruction is
executed at time reference 646, and the second INbnx
instruction is executed at time reference 647. The first INbnx
instruction is executed to input a bit signal into bit cell
numbered 7, skipping the alternate edge. This inputs a single
bit signal which is sampled at 642 into the bit cell numbered
7. The second INbnx instruction is executed at time refer-
ence 647 and repeats seven times at the beginning of the bit
cells numbered 9 through 15 to sample the remaining seven
bit signals di6 to di0. The values of these data input bit
signals are sampled at the time references shown by the
black diamonds at the ends of the bit cells numbered 9 to 15.
Sampling is performed by clocking these values through the
merge logic 520 (FIG. 10) to the serialization register.

At the time reference 648 at the end of the bit cell
numbered 15, the function clock signal again resumes its
normal frequency of two cycles per bit cell. In addition, on
the first cycle of the function clock signal 124, an output
control instruction is executed. This output control instruc-
tion holds the data which has been clocked into the serial-
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ization register 506, while turning off the control signals by
negating the serial data enable signal 626, allowing the serial
data direction control signals 624 to go low, and disabling
the clock out signal 627. On the second cycle of the function
clock signal executed in the bit cell following the bit cell
numbered 15 at the time reference 650, a store instruction is
executed which transfers the data from the serialization
register into the low order byte register 488 (FIG. 10), so that
data may be thereafter read out over the bus 106. The store
instruction also causes the interface 100 to inform the
embedded processor 104 that the data is available by assert-
ing a read event as a control signal 116 (FIG. 1) to interrupt
or otherwise inform the embedded processor that this data is
available. Thereafter at time reference 652, the sequence is
completed and unconditional branch 651 is executed to
return the flow of execution to the wait instruction at time
reference 628. If the embedded processor has another read
operation 620 set up, the wait instruction would be executed
at 628 in a single clock period and the entire sequence 620
would begin again.

The repeated execution of the OUTnxb and INbnx
instructions, as well as reducing the clock rate of the
function clock signal during the time that those instructions
are executed, significantly reduces the power consumed in
performing the operation and enhances the efficiency of
performing the read operation. Large numbers of instruc-
tions need not be fetched and executed, as would be the case
in a conventional processor emulating a state machine which
requires multiple instructions to be executed in a loop
involving at least fetching the instruction and executing it in
order to achieve one function. In the example of the read
operation 620 shown in FIG. 23, only about 12 instructions
are executed to supply a seven bit address signal and to
receive an eight-bit data byte. A comparable operation in a
conventional state machine would require in the neighbor-
hood of 50 to 70 or more instructions to be executed.
Reducing the number of instructions executed increases the
speed at which it is possible to perform the I/O operations or
reduce the clock rate which is needed to perform I/O at the
same speed. Furthermore, during the execution of these
instructions, the function clock operates at a diminished
frequency, thereby consuming significantly less power than
would otherwise be the case if its frequency remained
undiminished.

Similar benefits and functionality are also available dur-
ing the performance of the write operation 660 shown in
FIG. 24. A write operation involves transmitting or supply-
ing the address signal of a location at which data signals are
to be written, followed by transmitting the data signals
themselves. In this regard, the write operation 660 involves
similar addressing functionality as the read operation 620
which has been previously described in conjunction with
FIG. 23. Consequently, many of the reference numerals used
in FIG. 23 have also been used in FIG. 24 to describe
common reference points, events and items.

The write operation 660 shown in FIG. 24 is also shown
as beginning with the wait function as describe previously.
The functionality of the write operation during the address-
ing portion is similar to the functionality previously
described in conjunction with the read operation 620
described in FIG. 23, with the exception that the branch on
condition instruction is executed at time reference 661
which causes a branch to a write sequence at the time
reference 634. From the time reference 634, the write
sequence performs the identical functionality as has been
previously described in connection with the read operation
620 (FIG. 23) up through bit cell numbered 6.
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At the time reference 662 at the beginning of the bit cell
numbered 7, a delay 1 instruction (550, FIG. 11) is executed.
The delay 1 instruction asserts the alternate inhibit signal,
thereby causing the function clock generator to produce one
cycle during the bit cell numbered 7. The cross hatching
shown at SDIO means that the bit signal during a bit cell
numbered 7 is irrelevant, because its value has previously
been sampled in the bit cell numbered 6. The value is left in
place on the bus during the bit cell numbered 7 to save power
by not executing an instruction during that bit cell. No
recipient is sampling data during this bit cell numbered 7.

Beginning with the bit cell numbered 8 at time reference
to 664, the function clock signal 124 resumes its normal
frequency of two cycles per bit cell. During the first cycle of
the function clock signal occurring during the bit cell
numbered 8, a load control instruction is executed. The load
control instruction causes the data from the low order data
out register 484 (FIG. 10) to be to be loaded into the
serialization register 506 and to reset the bit counter 514 to
0. The load control instruction leaves the serial data enable
signal 626 and the serial data direction signal 624 in their
low states. The big endian control signal 538 removes set to
deliver out first the most significant bit (bit do7) on the SDIO
output signal.

During the second cycle of the function clock signal in the
bit cell numbered 8, which began set time reference 666, a
NOP instruction is executed. The output load control func-
tion does not have the method of specifying the alternate
inhibit functionality, so executing the NOP instruction at this
time maintains the proper time reference for executing
instructions in sequence.

At time reference 668 at the beginning of the bit cell
numbered 9, the OUTnxb instruction (600, FIG. 14) is
executed with a repeat value of 7 to cause bits do6 through
do0 to be supplied at bit cells numbered 9 through 15. The
alternate inhibit signal is asserted, causing the function clock
signal 124 to exhibit one cycle per bit cell. The same
OUTnxb instruction is thereafter repeatedly executed six
more times, thereby completing the transmission of the
eight-bit data byte at the end of the bit cell numbered 15 at
time reference 670.

A output control instruction is executed at the time
reference 670. The output control instruction ceases any
further operation of the serialization register 506 and causes
the data in it to be held. In addition, the serial data direction
control signal 624 is negated. The serial data enable signal
626 is allowed to go high, ending the operation by disabling
the external interface (FIG. 22) at the end of transmission.

On the second cycle of the function clock signal begin-
ning at time reference 672, a store instruction is executed.
The store functionality has no effect, i.e. is null, because
there is nothing to store. However, the done functionality is
an event or interrupt request (signal 116, FIG. 1) to the
embedded processor to indicate the completion of the write
transfer. Thereafter at time reference 674, the sequence is
completed and an unconditional branch 675 is executed to
return the flow of execution to the wait instruction at time
reference 628. If the embedded processor has another write
operation 660 set up, the wait instruction would be executed
at 628 in a single clock period and the entire sequence 660
would begin again.

The described examples of the write operation and the
read operation, as well as the improved functionality of the
dual edge function clock generator and from the data path
section of the interface illustrate its advantages. Very few
instructions are required to perform relatively powerful I/O
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functions. The I/O functions are therefore very effectively
and economically achieved, using a few instructions of a
relatively short number of bits. Consequently, the instruction
store may be made small to facilitate the incorporation of the
interface within the system chip. The ability to execute
certain widely used I/O function instructions for a repeated
number of times at an execution rate which is comparable to
be serial bit signal communication rate reduces the con-
sumption of power. The elements of the data path are
selected to reduce propagation delay and to avoid consum-
ing extra clock cycles. Many other advantages and improve-
ments will be apparent upon gaining a full understanding
and appreciation of the present invention.

A presently preferred embodiment of the present inven-
tion and many of its improvements have been described with
a degree of particularity. This description is a preferred
example of implementing the invention, and is not neces-
sarily intended to limit the scope of the invention. The scope
of the invention is defined by the following claims.

What is claimed is:

1. A function clock generator for generating a function
clock signal used to clock the execution of instructions by an
instruction decoder in a serial peripheral interface based on
a source clock signal having one cycle per bit signal trans-
mitted or received by the interface, comprising:

a logic gate circuit connected to receive the source clock
signal and a delayed copy of the source clock signal,
the logic gate circuit logically gating the source clock
signal with a the delayed copy of the source clock
signal to create the function clock signal; and

a delay circuit connected to receive the function clock
signal and responsive to edges of the function clock
signal gated by the logic gate circuit to create the
delayed copy of the source clock signal;

wherein the logic gate circuit implements XOR logic
functionality with respect to the source clock signal and
the delayed copy of the of the source clock signal; and

wherein a plurality of NAND rates is operatively con-
nected to implement the XOR logic functionality, the
source clock signal and the delayed copy of the source
clock signal being applied to at least one of the NAND
gates.

2. A function clock generator as defined in claim 1
wherein the source clock signal has rising and falling edges,
and wherein:

the logic gate circuit creates one cycle of the function
clock signal for each edge of the source clock signal.

3. A function clock generator as defined in claim 2
wherein the frequency of the function clock signal is twice
the frequency of the source clock signal.

4. A function clock generator as defined in claim 2
wherein each cycle of the function clock signal has a
positive phase and a negative phase, and one of the phases
of the function clock signal is established by time delayed
propagation of the copy of the source clock signal through
the through the delay circuit.

5. A function clock generator as defined in claim 4 further
comprising:

an inverter connected to the delay circuit to invert the
delayed copy of the source clock signal prior to apply-
ing the delayed copy of the source clock signal to the
logic gate circuit.

6. A function clock generator as defined in claim 2

wherein:

the time delay circuit includes a flip-flop, a delay element
and an inverter connected in series and a feedback path
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from the inverter to the flip-flop to supply a signal from
the inverter to the flip-flop in a feedback configuration,
and wherein:

the time delayed copy of the source clock signal is derived
from an output signal from the inverter in the feedback
path; and

the flip-flop is clocked to change states upon each rising
edge of the function clock signal.

7. A function clock generator as defined in claim 6
wherein the signal from the delay path which is clocked
through the flip-flop alternates in polarity with each rising
edge of the function clock signal.

8. A function clock generator as defined in claim 7
responsive to an alternate inhibit signal and further com-
prising:

a selective inverting logic gate connected to receive the
delayed copy of the source clock signal from the
inverter of the delay circuit and to receive the alternate
inhibit signal, the selective inverting logic gate supply-
ing an inverted copy of the source clock signal from the
delay circuit upon the assertion of the alternate inhibit
signal; and

the logic gate circuit responding to the source clock signal
and the inverted copy of the source clock signal from
the selective inverting logic gate to transition edges of
the function clock signal coincidentally with edges of
the source clock signal.

9. A function clock generator as defined in claim 2
responsive to an alternate inhibit signal and further com-
prising:

a selective inverting logic gate connected to receive the
delayed copy of the source clock signal from the delay
circuit and to receive the alternate inhibit signal, the
selective inverting logic gate supplying an inverted
copy of the source clock signal from the delay circuit
upon the assertion of the alternate inhibit signal; and

the logic gate circuit responding to the source clock signal
and the inverted copy of the source clock signal from
the selective inverting logic gate to transition edges of
the function clock signal coincidentally with edges of
the source clock signal so long as the alternate inhibit
signal is asserted.

10. A function clock generator as defined in claim 9
further responsive to a rising edge primary signal and further
comprising:

a second selective inverting logic gate connected to
receive the delayed copy of the source clock signal
from the delay circuit and to receive the rising edge
primary signal, the second selective inverting logic gate
supplying a non-inverted copy of the source clock
signal from the delay circuit upon the assertion of the
alternate inhibit signal and the rising edge primary
signal; and

the logic gate circuit responding to the source clock signal
and the non-inverted copy of the source clock signal
from the second selective inverting logic gate to tran-
sition rising edge of the function clock signal coinci-
dentally with a rising edge of the source clock signal
upon the assertion of the alternate inhibit signal and the
rising edge primary signal.
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11. A method for generating a function clock signal used
to clock the execution of instructions In a serial peripheral
interface based on a source clock signal having one cycle per
bit signal transmitted or received by the interface, compris-
ing the steps of:

logically gating the source clock signal and a delayed
copy of the source clock signal with NAND logic
functionality to create the function clock signal; and

creating the delayed copy of the source clock signal used
in response to edges of the function clock signal created
by the logical gating.

12. A method as defined in claim 11 wherein the source
clock signal has rising and falling edges and further com-
prising the step of:

creating one cycle of the function clock signal for each

edge of the source clock signal.

13. A method as defined in claim 12 wherein each cycle
of the function clock signal has a positive phase and a
negative phase, and further comprising the steps of:

establishing one of the phases of the function clock signal
by time delaying a propagation of the copy of the
source clock signal; and

logically gating the source clock signal and the time
delayed copy of the source clock signal.
14. A method as defined in claim 13 further comprising
the step of:

inverting the time delayed and propagated copy of the

source clock signal prior to logically clocking the

source clock signal with the time delayed copy of the
source clock signal.

15. A method as defined in claim 14 responsive to an

alternate inhibit signal and further comprising the steps of:

selectively inverting the time delayed copy of the source
clock signal; and

logically clocking the source clock signal and the inverted
copy of the source clock signal to transition edges of
the function clock signal coincidentally with edges of
the source clock signal while asserting the alternate
inhibit signal.
16. A method as defined in claim 15 further responsive to
a rising edge primary signal and further comprising the steps
of:
selectively inverting the delayed copy of the source clock
signal to create a non-inverted copy of the source clock
signal from the delay circuit upon the assertion of the
alternate inhibit signal and the rising edge primary
signal; and
logically gating the source clock signal and the non-
inverted copy of the source clock signal to transition a
rising edge of the function clock signal coincidentally
with a rising edge of the source clock signal upon the
assertion of the alternate inhibit signal and the rising
edge primary signal.
17. A method as defined in claim 15 further comprising
the step of:
clocking the execution of a program instruction by using
the function clock signal.
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