US006141683A

United States Patent [(1] Patent Number: 6,141,683
Kraml et al. [45] Date of Patent: *Qct. 31, 2000
[54] METHOD FOR REMOTELY AND RELIABLY 5,625,804 4/1997 Cooper et al. ..o 395/500
UPDATING OF THE SOFTWARE ON A 5,682,533 10/1997 SiljeStroemercocecevveunee. 395/616
COMPUTER WITH PROVISION FOR ROLL 5,764,992 6/1998 Kullick et al. 395/712
BACK 5,798,785 8/1998 Hendricks et al.cccoververeennenns 348/1
5,873,088 2/1999 Hayashi et al. 707/100
- 6,031,830 2/2000 Cowan 370/338
[75] Inventors: Mark Heinrich Kraml, Flanders, N.J; P .
Jane Mary Leonard, Naperville, I11; 6,070,012 5/2000 FINET ..coccoeeverrenueeecneneereneenenne 395/712
Harvey Rubin, Morristown, N.J.; Primary Examiner—Zarni Maung
Laurel Ann Salvador, Winfield, I11. Assistant Examiner—Andrew Caldwell
Attorney, Agent, or Firm—DeMont & Breyer, LLC; Jason
[73] Assignee: Lucent Technologies, Inc., Murray Paul DeMont; Wayne S. Breyer
Hill, N.J. [57] ABSTRACT
[*] Notice: This patent issued on a continued pros-

A technique for updating the software in a remote computer
(e.g., a base station, a spacecraft in space, an electronic
postage meter in an office, a medical monitoring device in a
patient’s home, etc.) from a central control (e.g., a wireless

ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.

154(2)(2)- switching center, the National Aeronautics and Space
Administration’s Houston Control, a postage meter facility,
[21] Appl. No.: 09/016,574 a medical equipment manufacturer’s factory, etc.) is dis-
[22] Filed: Jan. 30, 1998 closed. An illustrative embodiment of the present invention
’ U comprises: checking the integrity of a first software appli-
[51] Int. CL7 .o, GO6F 15/177;, GOGF 9/445 cation at a first location in a first memory that is pointed to
[52] US. Cl oo 709/220; 395/712 by a first address in a pointer; copying the first software
[58] Field of Searchccoovecrnccnn. 709/217, 220, application from the first memory to the second memory and
709/250; 395/712 executing the first software application from the second
memory, when the integrity of the first software application
[56] References Cited is nominal; transmitting a first message indicating that the
integrity of the first software application is not nominal,
U.S. PATENT DOCUMENTS when the integrity of the first software application is not
5,155,837 10/1992 Litl €t al. woooeorersrrorroren 39s/500 ~ mominal; and receiving a first command to store a second
5,359,730 10/1994 MAITON w.ooerververrsoesesrseroesen 395/650 address in the pointer, in response to the first message.
5,481,714 1/1996 Pipkin et al. ...oooovevvvrererrsoenen 3957700
5,555,418 9/1996 Nilsson et al. ..c..ccooeervreverennsen. 395/700 18 Claims, 3 Drawing Sheets
CONTROL CENTER 210 REMOTE COMPUTER 230
(CSIART)
Ji 401
TRANSMIT FIRST SOFTWARE RECEIVE FIRST SOFTWARE APPLICATION]./~ 402
APPLICATION TO sEMOTE COMPUTER AND STORE IN ALTERABLE MEMORY
TRANSMIT COMMAND TO STORE |/~ 403 RECEIVE COMMAND AND STORE | 404
ADDRESS OF FIRST SOFTWARE ADDRESS OF FIRST SOFTWARE
APPLICATION INTO POINTER APPLICATION INTO POINTER
[® RECEIVE AND EXECUTE COMMAND 406
] | A MMA
[TRANSMIT COMMAND TO RE-BOOT | D e
CHECK INTEGRITY OF SOFTWARE |~ 407
ya 410 APPLICATION AT LOCATION "
RECEIVE WESSAGE THAT INTEGRITY POINTED BY ADDRESS IN POINTER /
OF SOFTWARE APPLICATION IS NOT ' £ 408 [COPY AND EXECUTE SOFTWARE
NOMINAL <15 INTEGRITY NOMINAL ? | APPLICATION AT LOCATION
: 0 N 09 | POINTED BY ADDRESS IN POINTER
IS THERE ANOTHER VERSION TRANSMIT MESSAGE INDICATING 415
OF THE SOFTWARE APPLICATION THAT INTEGRITY OF SOFTWARE
'Nn< IN ALTERABLE. MEMORY 2 >/ APPLICATION IS NOT NOWINAL A e 7 TN
YES] Ve 412 ya 413 s
TRANSMIT COMMAND TO STORE RECEIVE COMMAND AND STORE 46 TRANSMIT, IF POSSIBLE, MESSA(fl
le—— ADDRESS OF ANOTHER SOFTWARE ADDRESS OF ANOTHER SOFTWARE INDICATING THAT SOFTWARE
APPLICATION INTO POINTER APPLICATION INTO POINTER APPLICATION HAS CRASHED
NO
RE-BOOT SAME N 417 l
APPLICATION SOFTWARE ?

U.S. Patent Oct. 31, 2000 Sheet 1 of 3 6,141,683

101

103-1

ﬁ 103-2
3

101-1

101-

\
e

/

>

B

/
&%

/\

WSC
)
120

1
PRIOR ART
100
150
0
1.0
138 _~ o

130

FIG.

140

U.S. Patent Oct. 31, 2000 Sheet 2 of 3 6,141,683

FIG. 2
210 220 230
| \ \
CONTROL COMMUNICATIONS REMOTE
CENTER [T | CHANNEL [T |COMPUTER
FIG. 3
230
............. S
| REMOTE COMPUTER ;
N W
{ | PROCESSOR POINTER |
§ t 730
| FIRST |
=T RECEIVER i
i < 350 |
| 310 SECOND §
g MEMORY g

6,141,683

Sheet 3 of 3

Oct. 31, 2000

U.S. Patent

_ /& JYMLIOS NOILYIMddY

QIHSV¥D SVH NOILYOINddY
JYYMLI0S LYHL ONILVOIONI <

J9VSSIN ‘I18ISS0d 41 ‘LINSNVAL 91y

Y3INIOd OINI NOILYOIddV

3

LI 2\

JNVS 1008-34
10N

Y3INIOd OINI NOLLYOINddY

JYVMLII0S ¥IHIONY J0 SSI¥AQV
JY401S ONV ONVANOD 3AT3O3

i}

siw/

¢ QIHSVYO
NOILYOINddV J¥VMLI0S SYH

TYNINON 1ON SI NOILYOINddv
JYVMLIOS 10 ALI¥OIINT LVHL

INILIVIIONT JOVSSIN LINSNVAL

Y3LNIOd NI SS3¥QQY A8 Q3INIOd

NOILYJ01 LV NOILYOIddV
JYYMLII0S 31NJ3X3 ANV Ad0D

sov 7 onf

<

i ININON ALIOIINL ST >
80r 7/ i

Sw\

Y3INIOd NI SSI¥QAV A8 (Q3INIOd
NOILVJO01 1V NOILYOIddY
JYVMLI0S 40 ALIIOIINT XJ3HI

1

1008-34 OL

JYYMII0S Y3IHIONY 40 SSI¥aav
3401S OL ONVYANOD LINSNYYL

2w fsa

Ly

¢ AON3IN 1EVYILTY NI
NOILVOINddY J4YMLI0S 3HL 10
NOIS¥3A ¥3HLONY 3y3H1 SI
3

TVNINON

10N SI NOLLVIIddY 3¥VM140S 10
ALIYIIINT LVHL JOVSSIN JAIIIY

o/

(UNYAROD 31nJ3X3 ANV JAIFIIY

Y43INIOd OINI NOLLYOIddY
J¥VMLI0S 1SY¥I4 40 SSIyaav

sor 7 -

1008-34 0L ONYANOD LINSNYAL |
)

d3INIOd OLNI NOILLYOTddY

JY0LS ONY ONVYANOD ALY

v CO1d

AYONIN 318VH3LTY NI JHOLS ONV

JYVMLI0S 1SHI1 40 SSI¥aav
JY01S 0L ONVANOD LINSNVYL

$
431NdNOJ 3L0W3Y OL NOILVITddY

NOLLVIddV 3¥VMLJ0S 1S¥I4 3AI3D3Y

0£¢ ¥31NdM0D I10M3Y

JYVMLI0S 1SYI4 LINSNWYL
3
114 J

@t
012 ¥3IN3D T0YINOD

6,141,683

1

METHOD FOR REMOTELY AND RELIABLY
UPDATING OF THE SOFTWARE ON A
COMPUTER WITH PROVISION FOR ROLL
BACK

FIELD OF THE INVENTION

The present invention relates to telecommunications in
general, and, more particularly, to a method and apparatus
for remotely installing software in a base station in a
wireless telecommunications system.

BACKGROUND OF THE INVENTION

FIG. 1 depicts a schematic diagram of a portion of a
typical wireless telecommunications system in the prior art,
which system provides wireless telecommunications service
to a number of wireless terminals (e.g., wireless terminals
101-1 through 101-3) that are situated within a geographic
region. The heart of a typical wireless telecommunications
system is Wireless Switching Center (“WSC”) 120, which
may also be known as a Mobile Switching Center (“MSC”)
or Mobile Telephone Switching Office (“MTSO”).
Typically, Wireless Switching Center 120 is connected to a
plurality of base stations (e.g., base stations 103-1 through
103-5) that are dispersed throughout the geographic arca
serviced by the system and to local and long-distance
telephone and data networks (e.g., local-office 130, local-
office 139 and toll-office 140). Wireless Switching Center
120 is responsible for, among other things, establishing and
maintaining calls between wireless terminals and between a
wireless terminal and a wireline terminal, which is con-
nected to the system via the local and/or long-distance
networks.

The geographic area serviced by a wireless telecommu-
nications system is partitioned into a number of spatially
distinct areas called “cells.” As depicted in FIG. 1, each cell
is schematically represented by a hexagon; in practice,
however, each cell usually has an irregular shape that
depends on the topography of the terrain serviced by the
system. Typically, each cell contains a base station, which
comprises the radios and antennas that the base station uses
to communicate with the wireless terminals in that cell and
also comprises the transmission equipment that the base
station uses to communicate with Wireless Switching Center
120.

For example, when wireless terminal 101-1 desires to
communicate with wireless terminal 101-2, wireless termi-
nal 101-1 transmits the desired information to base station
103-1, which relays the information to Wireless Switching
Center 120. Upon receipt of the information, and with the
knowledge that it is intended for wireless terminal 101-2,
Wireless Switching Center 120 then returns the information
back to base station 103-1, which relays the information, via
radio, to wireless terminal 101-2.

A software application at each base station controls,
among other things, the task of regulating the flow of
information within that cell. As is well-known in the prior
art, the software application can be complex and can require
periodic or sporadic updates either to replace a corrupt
software application or to provide an enhanced software
application.

For example, the software application controlling a base
station might comprise an error caused by a mistake in the
logic in designing the software application, or an error
caused by the corruption of one or more bits constituting the
copy of the software application stored at the base station.
The latter error can be caused by, for example, lightning,

10

15

20

35

40

45

50

55

60

65

2

electrical surges on the power supply, solar flares, etc.
Alternatively, the software application in the base station
might need to be updated because a new version of software
application has been developed that adds a new feature to the
base station.

In either case, the new software application must be
installed at the base station: (1) while the base station is
performing its desired functionality, and (2) in a reliable
manner. For example, a base station provides telecommu-
nications services to customers 24 hours per day, and often,
as in the case of 911 calls, the urgency of the calls is such
that the base station should not be removed from service
while the new software application is installed. Furthermore,
the installation of the new software application and the
design of the base station must be such that if there are any
problems with the new software application, the base station
is robust and able to recover while minimizing any disrup-
tion in service to customers.

A first method in the prior art for installing a software
application in a base station is for the technician to physi-
cally transport the medium (e.g., a diskette, a CD-ROM,
etc.) embodying the software application to the base station
and to manually install the new software application into the
base station. A wireless telecommunications system can
comprises thousands of base stations that are dispersed over
a vast geographic region and, therefore, it can be prohibi-
tively slow or expensive or both to dispatch a technician to
each base station. Although this method for installation can
be performed while the base station is running, assuming
that the base station has appropriate multitasking software,
the reliability of this method is not clear. For example, if the
newly installed software application crashes while the tech-
nician is at the base station, the technician can quickly
re-install the software application. In contrast, if the new
software application crashes after the technician has left the
base station, service at the base station could be disrupted for
a considerable period until the technician is able to return to
the base station.

A second method in the prior art involves utilizing the
communications channel between the wireless switching
center and the base station to transport the software appli-
cation. First the new software application is stored on a
computer at the wireless switching center and a technician is
dispatched to each base station, in turn. In accordance with
this method, the technician does not transport a medium
embodying the software application. The technician does,
however, manually enter commands into the base station’s
console directing the base station to retrieve the software
application from the wireless switching center and to store
it into the base station’s memory. After the software appli-
cation is stored, the technician directs the base station to
begin executing it. If the application fails while the techni-
cian is at the base station, the technician can re-install the
software application, or, if the technician suspects a pro-
gramming error, the technician can direct the base station to
retrieve a prior, previously-tested software application from
the wireless switching center and to store it into the base
station’s memory.

The second method is advantageous in that it allows a
software application to be installed at the base station that is
very recently created, and might not have been available to
the technician when th, technician was last at his or her
service facility. Furthermore, this method is advantageous
because it enables the technician to have access to several
versions of the software application, in case one version
does not work. The second method is disadvantageous,
however, because, like the first prior art method, it is slow,
expensive, and offer’s no more reliability than the first prior
art method.

6,141,683

3

A third method in the prior art involves remotely directing
the base station from the wireless switching center to install
and execute a software application. This method is advan-
tageous in that it eliminates the delay and expense of
dispatching a technician to the base station, and allows
very-recently developed software to be installed at the base
station. This method is disadvantageous, however, in that if
the software application crashes, the base station can be out
of service while the software application is being
re-installed. And because the software application can com-
prise megabytes of data, re-installation can take several
minutes.

Therefore, the need exists for a technique for installing a
software application at a base station reliably, inexpensively,
and while the base station is performing its intended func-
tionality.

SUMMARY OF THE INVENTION

Some embodiments of the present invention are capable
of installing a new version of a software application in a
remote computer (e.g., a base station, a spacecraft in space,
an electronic postage meter in an office, a medical monitor-
ing device in a patient’s home, etc.) from a central control
(e.g., a wireless switching center, the National Aeronautics
and Space Administration’s Houston Control, a postage
meter facility, a medical equipment manufacturer’s factory,
etc.) with fewer costs and disadvantages than techniques in
the prior art. In particular, some embodiments of the present
invention are capable of installing a new version of a
software application in a remote computer while the remote
computer is executing an older version of the software
application and in such a manner that if the new version of
the software application is or becomes unusable for any
reason, the remote computer can quickly “roll-back” to the
older version (i.e., execute the older version instead of the
newer version).

For example, consider a base station that is running an old
version of a software application and that can have its
functionality improved by a new version of the software
application. Because the owner of a base station only earns
revenue while the base station is operating, and because a
base station provides essential public services (e.g., “911”
service, etc.), it is detrimental to remove a base station from
service to install the new version of the software application.
Rather, it would be advantageous if the new version of the
software application could be installed in the base station
while the base station is operating—and, furthermore, while
the base station is executing the older version of the software
application.

In some embodiments of the present invention, the new
version of the software application is installed into the base
station’s memory without overwriting the old version of the
software application. If the new version of the software
application crashes, or otherwise becomes unusable, then the
base station can begin using the old version of the software
application immediately because it is already stored in the
base station. In otherwords, if the new version of the
software application crashes or is otherwise unusable, the
base station need not suspend operation while the new
version of the software application is being retransmitted
and re-installed—the base station can operate, albeit possi-
bly with diminished functionality, using the old version of
the software application until the new version has been
re-installed in the base station.

An illustrative embodiment of the present invention com-
prises: checking the integrity of a first software application

5

10

15

20

30

35

40

45

50

55

60

65

4

at a first location in a first memory that is pointed to by a first
address in a pointer; copying the first software application
from the first memory to the second memory and executing
the first software application from the second memory, when
the integrity of the first software application is nominal;
transmitting a first message indicating that the integrity of
the first software application is not nominal, when the
integrity of the first software application is not nominal; and
receiving a first command to store a second address in the
pointer, in response to the first message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a schematic diagram of a wireless tele-
communications in the prior art.

FIG. 2 depicts a block diagram of the illustrative embodi-
ment of the present invention.

FIG. 3 depicts a block diagram of the salient components
of the remote computer depicted in FIG. 2.

FIG. 4 depicts a flowchart of the steps performed by the
illustrative embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 2 depicts a block diagram of an illustrative embodi-
ment of the present invention, which enables a command
center to control, monitor, program and re-program a remote
computer, which can be separated from the command center
by a vast distance.

The illustrative embodiment depicted in FIG. 2 advanta-
geously comprises: control center 210, communications
channel 220 and remote computer 230. Control center 210
is advantageously a facility (e.g., a wireless switching
center, the National Aeronautics and Space Administration’s
Houston Control, a postage meter facility, a medical equip-
ment manufacturer’s factory, an automobile manufacturer,
etc.) that is capable of controlling, monitoring, programming
and re-programming remote computer 230 (e.g., a wireless
base station, a spacecraft in space, a postage meter in an
office, a medical monitor in a person’s home, an automobile,
etc.) via communications channel 220. Communications
channel 220 can be a wireless or wireline connection, in
well-known fashion, which communicatively connects
remote computer 230 to control center 210. Control center
210 advantageously comprises all of the equipment that is
capable of receiving messages from remote computer 230
and transmitting commands and files to remote computer
230. It will be clear to those skilled in the art how to make
and use control center 210 and communications channel
220.

FIG. 3 depicts a block diagram of the salient components
of remote computer 230, which advantageously comprises:
transmitter/receiver 310, processor 320, pointer 330, first
memory 340, and second memory 350, interconnected as
shown. Transmitter/receiver 310 is advantageously capable
of receiving commands and data from control center 210 and
of transmitting messages and data to control center 210, in
well-known fashion via either a wireless or wireline channel.
Processor 320 is advantageously an appropriately-
programmed general-purpose processor or a hard-wired
special-purpose processor that is capable of interfacing with
transmitter/receiver 310, pointer 330, first memory 340 and
alterable memory 350, in well-known fashion.

Pointer 330 is advantageously a location in a non-volatile
memory or a register or an entry in a directory, which
contains the address (e.g., a file descriptor for a flat or
hierarchical file system, a binary address, etc.) of a location
in first memory 340, in well-known fashion.

6,141,683

5

First memory 340 is advantageously a non-volatile
memory (e.g., a flash memory, etc.), which contains a
thoroughly-tested bootstrapping program (e.g., an operating
system, a monitor, etc.) that is automatically executed when
remote computer 230 undergoes a cold re-boot. First
memory 340 also advantageously contains at least a new
version of the desired software application and at least one
older version of the software application.

Although only the new version of the software application
is necessary for execution, first memory 340 advantageously
holds an older version of the software application for the
same reason that an automobile carries a spare tire. Although
a spare tire is typically an identical replacement for a
punctured tire, the older version of the software application
is, in contrast, typically not a identical replacement for the
newer version of the software application. Typically, the
newer version provides more functionality than the older
version, but the older version, while less advantageous in
terms of functionality, provides some functionality until the
newer version can be fixed and re-installed in remote
computer 230.

Therefore, remote computer 230 advantageously uses the
newer version of the software application, when and if
possible, and uses the older version of the software appli-
cation if the newer version is or becomes unusable for any
reason.

Second memory 350 is advantageously a volatile memory
(e.g., high-speed SRAM, etc.) that is of sufficient capacity to
store any one version of the software application.
Advantageously, processor 320 can read from and write to
second memory 350 more quickly than processor 320 can
read from and write to first memory 340. In other words, first
memory 340 is used to store several versions of the software
application before they are copied into second memory 350
for execution. Second memory 350 and first memory 340 are
advantageously, but not necessarily, in the same address
space.

FIG. 4 depicts a flowchart of the salient steps performed
by the illustrative embodiment of the present invention. The
operation of the illustrative embodiment is recursive and,
therefore, references to particular versions of the software
application can be articulated only in relative, in contrast to
absolute, terms.

When the flowchart in FIG. 4 begins, remote computer
230 is presumed to be operating normally and executing
version “n” of the software application from second memory
350. Furthermore, version n (the newer version) and version
n-1 (the older version) of the software application are both
stored in first memory 340.

At step 401, control center 210 advantageously transmits
the newest version of the software application, version n+1,
to remote computer 230, in well-known fashion via com-
munications channel 220.

At step 402, remote computer 230, under the control of
version n, stores version n+1 into first memory 340, in
well-known fashion. In some embodiments of the present
invention, control center 210 can direct the exact location in
second memory 350 into which the version n+1 is stored, or,
alternatively, control center 210 can allow remote computer
230 to decide the location. When remote computer 230
decides the location, that location is advantageously stored
in a non-volatile memory or is transmitted to control center
210 or both.

Advantageously, all versions of the software application
are capable of multi-tasking. In particular, version n is
advantageously capable of performing its desired function-

10

15

20

25

35

40

45

50

55

60

65

6

ality (i.e., the functionality for which it was designed and
built) and of receiving and storing version n+l of the
software application into an unused portion of first memory
340.

At step 403, control center 210 transmits a command to
remote computer 230 directing remote computer 230 to store
into pointer 330 the address of the location in first memory
340 where version n+1 is stored. It is not necessary that
control center 210 knows the address of the location where
the first software application is stored as long as remote
computer 230 knows the address and is capable of executing
the command. In general, however, it is advantageous that
either control center 210 or remote computer 230 or both
know the address.

At step 404, remote computer 230, under the control of
version n, stores the address of version n+1 into pointer 330,
in well-known fashion. At this point, remote computer 230
contains copies of at least three versions of the software
application: version n-1 (the oldest), version n (the one
currently running), and version n+1 (the newest).

At step 405, control center 210 transmits a command to
remote computer 230 directing processor 320 to re-boot, in
well-known fashion.

At step 406, remote computer 230 begins the process of
re-booting, in well known fashion, which advantageously
comprises executing the bootstrapping program in first
memory 340.

At step 407, processor 320, under the control of the
bootstrapping program, checks the integrity of whatever
version of the software application is currently pointed to by
the address contained in pointer 330. The integrity of the
software application can be checked, for example, by com-
puting the Cyclic Redundancy Checksum (“CRC”) code of
the software application against a stored checksum, in
well-known fashion. It will be clear to those skilled in the art
how to check the integrity of a program, file or other string
of symbols.

At step 408, remote computer 230, under the control of
the bootstrapping program, makes the decision to follow one
of two courses of action. When the integrity of the checked
version is nominal, then control passes to step 414. For the
purposes of this specification, the term “nominal” means
that the bits constituting that version of the software appli-
cation are not corrupted. When the integrity of the checked
version is not nominal, then control passes to step 409.

At step 409, remote computer 230, under the control of
the bootstrapping program, advantageously transmits a mes-
sage to control center 210 indicating that the integrity of the
checked version is not nominal.

At step 410, control center 210 receives the message from
remote computer 230 indicating that the integrity of the
checked version is not nominal.

At step 411, control center 210 determines whether ver-
sion n remains in first memory 340. When it does, control
passes to step 412; otherwise control passes to step 401.

At step 412, control center 210 transmits a command to
remote computer 230 directing remote computer 230 to store
the address of the location of version n into pointer 330.
From step 412, control passes to step 405.

At step 413, remote computer 230, under control of the
bootstrapping program, receives and executes the command
to store the address of the location of version n into pointer
330. It is not necessary that control center 210 knows the
address of the location where version n is stored as long as
remote computer 230 knows the address and is capable of

6,141,683

7

executing the command. In general, however, it is advanta-
geous that either control center 210 or remote computer 230
or both know the address.

At step 414, remote computer 230, under control of the
bootstrapping program, copies the software application at
the location in first memory 340 pointed to by the address
contained in pointer 330 (ie., version n+l1) into second
memory 350, and begins execution of version n+1 from
second memory 350.

At step 415, remote computer 230 determines, if possible,
if version n+l1 has crashed. When version n+1 has not
crashed, control remains at step 415. When version n+1 has
crashed, then control passes to step 416. While remote
computer 230 is executing version n+1, it is advantageously
transmitting telemetry data to command center 210 regard-
ing the status of remote computer 230.

At step 416, remote computer 230 transmits a message, if
possible, to control center 210 indicating that version n+1
has crashed. When remote computer 230 is unable to trans-
mit a message indicating that version n+1 has crashed,
perhaps because the crash has corrupted and frozen remote
computer 230, control center 210 is advantageously capable
of inferring the crash from changes in telemetry data from
remote computer 210.

At step 417, control center 210 advantageously receives
the message indicating that version n+1 has crashed and
decides if version n+1 should be re-booted, or, alternatively,
if a roll-back to version n should be initiated. The function-
ality afforded by step 417 is advantageous because it enables
control center 210 to try version n+1 several times to be
convinced that it is flawed before initiating the roll-back to
version n. If control center 210 desires to re-boot version
n+1, control passes to step 405; alternatively, control passes
to step 411. Alternatively, if control center 210 infers from
changes in telemetry data that remote computer 230 has
crashed, then control center 210 spontaneously passes con-
trol to step 405. The illustrative embodiment continues the
process of rolling back to earlier versions (e.g., version n-1,
version n-2, etc.) until a version is located whose integrity
is nominal and until the newest version (e.g., version n+1,
version n+2, etc.) can be installed, or re-installed, and
executed by remote computer 230.

The technique depicted in FIG. 4 is recursive, and advan-
tageously: (1) enables the software in remote computer 230
to be updated while remote computer 230 is operating, (2)
is reliable in that it enables remote computer 230 to roll-back
to previous versions of the software application, if they
exist, while reducing any disruption in the provisioning of
service, and (3) is inexpensive.

It is to be understood that the above-described embodi-
ments are merely illustrative of the invention and that many
variations may be devised by those skilled in the art without
departing from the scope of the invention. It is therefore
intended that such variations be included within the scope of
the following claims and their equivalents.

What is claimed is:

1. A method comprising:

checking the integrity of a first software application at a

first location in a first memory that is pointed to by a
first address in a pointer;

copying, after said checking the integrity of said first

software application, said first software application
from said first memory to said second memory and
executing said first software application from said
second memory when the integrity of said first software
application is nominal;

5

10

15

30

35

40

45

50

55

65

8

transmitting a first message indicating that the integrity of
said first software application is not nominal, when the
integrity of said first software application is not nomi-
nal; and

receiving a first command to store a second address in said

pointer, in response to said first message.

2. The method of claim 1 further comprising checking the
integrity of a second software application at a second
location in said first memory that is pointed to by said
second address.

3. The method of claim 2 further comprising:

executing said second software application, when the
integrity of said second software application is nomi-
nal; and

transmitting a second message indicating that the integrity
of said second software application is not nominal,
when the integrity of said second software application
is not nominal.

4. The method of claim 3 further comprising:

receiving a copy of said first software application, in
response to said second message; and

storing said copy of said first software application at a
third location in said first memory.

5. The method of claim 4 wherein said first location equals

said third location.

6. The method of claim 3 further comprising:

receiving a second command to store a third address in
said pointer;

checking the integrity of said copy of said first software
application in said first memory, which is pointed to by
said third address in said pointer;

copying copy of said first software application from said
first memory to said second memory arid executing
said copy of said first software application from said
second memory, when the integrity of said first soft-
ware application is nominal; and

transmitting a third message indicating that the integrity
of said copy of said first software application is not
nominal, when the integrity of said copy of said first
software application is not nominal.

7. An apparatus comprising:

a processor for checking the integrity of a first software
application at a first location in a first memory that is
pointed to by a first address in a pointer, and for
copying, after said checking the integrity of said first
software application, said first software application
from said first memory to a second memory and
executing said first software application from said
second memory when the integrity of said first software
application is nominal;

a transmitter for transmitting a first message indicating
that the integrity of said first software application is not
nominal, when the integrity of said first software appli-
cation is not nominal; and

a receiver for receiving a first command to store a second
address in said pointer, in response to said first mes-
sage.

8. The apparatus of claim 7 wherein said processor checks
the integrity of a second software application in said first
memory that is pointed to by a second address in said
pointer.

9. The apparatus of claim 8 wherein said processor
executes said second software application, when the integ-
rity of said second software application is nominal; and said
transmitter transmits a second message indicating that the

6,141,683

9

integrity of said second software application is not nominal,
when the integrity of said second software application is not
nominal.

10. The apparatus of claim 8 wherein said receiver
receives a copy of said first software application, in response
to said second message; and said processor stores said copy
of said first software application at a third location in said
first memory.

11. The apparatus of claim 10 wherein said first location
equals said third location.

12. The apparatus of claim 10 wherein:

said processor receives a second command to store said
third address in said pointer, and checks the integrity of
said copy of said first software application in said first
memory that is pointed to by said third address in said
pointer, and executes said copy of said first software
application, when the integrity of said copy of said first
software application is nominal; and

said transmitter transmits a third message indicating that
the integrity of said copy of said first software appli-
cation is not nominal, when the integrity of said copy
of said first software application is not nominal.

13. A method comprising:

transmitting a first software application to a remote com-
puter for storage in a first location in a first memory that
is pointed to by a first address;

transmitting a first command to said remote computer
directing said remote computer to store said first
address in a pointer;

receiving a first message from said remote computer
indicating that the integrity of said first software appli-
cation in said first memory is not nominal; and

transmitting a second command to said remote computer
directing said remote computer to store a second
address, which points to a second software application
in a second location in said first memory, in said
pointer, in response to said first message.

14. The method of claim 13 further comprising:

receiving a second message from said remote computer
indicating that the integrity of said second software
application in said first memory is not nominal;

5

15

20

35

10

transmitting a copy of said first software application to
said remote computer for storage in a third location in
said first memory that is pointed to by a third address;
and
transmitting a third command to said remote computer
directing said remote computer to store said third
address in said pointer.
15. The method of claim 14 wherein said first location
equals said third location.
16. A wireless switching center comprising:
means for transmitting a first software application to a
remote computer for storage in a first location in a first
memory that is pointed to by a first address;
means for transmitting a first command to said remote
computer directing said remote computer to store said
first address in a pointer;
means for receiving a first message from said remote
computer indicating that the integrity of said first
software application in said first memory is not nomi-
nal; and
means for transmitting a second command to said remote
computer directing said remote computer to store a
second address, which points to a second software
application in a second location in said first memory, in
said pointer, in response to said first message.
17. The wireless switching center of claim 16 further
comprising:
means for receiving a second message from said remote
computer indicating that the integrity of said second
software application in said first memory is not nomi-
nal;
means for transmitting a copy of said first software
application to said remote computer for storage in a
third location in said first memory that is pointed to by
a third address; and
means for transmitting a third command to said remote
computer directing said remote computer to store said
third address in said pointer.
18. The wireless switching center of claim 17 wherein
said first location equals said third location.

#* #* #* #* #*

